If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2+31/4x=12+51/2x
We move all terms to the left:
2+31/4x-(12+51/2x)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
Domain of the equation: 2x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
31/4x-(51/2x+12)+2=0
We get rid of parentheses
31/4x-51/2x-12+2=0
We calculate fractions
62x/8x^2+(-204x)/8x^2-12+2=0
We add all the numbers together, and all the variables
62x/8x^2+(-204x)/8x^2-10=0
We multiply all the terms by the denominator
62x+(-204x)-10*8x^2=0
Wy multiply elements
-80x^2+62x+(-204x)=0
We get rid of parentheses
-80x^2+62x-204x=0
We add all the numbers together, and all the variables
-80x^2-142x=0
a = -80; b = -142; c = 0;
Δ = b2-4ac
Δ = -1422-4·(-80)·0
Δ = 20164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{20164}=142$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-142)-142}{2*-80}=\frac{0}{-160} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-142)+142}{2*-80}=\frac{284}{-160} =-1+31/40 $
| 3/7h+5=8/3 | | 3x-10=2x+10=60 | | (3y+53)+(7y-53)=180 | | 14x-12=36+2x | | 3x−5(x−3)=−9+3x-4 | | -8+8x+44=11x+9 | | x³=98 | | 4a=2345334432 | | 3/2x-3=-6 | | 8=k+25/5 | | 2x-15=105 | | 93=3m | | -x+4=7x-4 | | 8-4x=60 | | x³=63 | | -(x+7)+3x=10-3x+3 | | x/2+1/4=-10/8 | | (3y+53)(7y-53)=180 | | 6.95+0.5x=22.95+0.2x | | 12+2p=20 | | -2/3x+8=26 | | 3y-18=2y-8 | | 3z = 36 | | 3/4(12b-9)+b/4=5-3(2-3b) | | 2h-4/2=24 | | 3x+5+75=6x+10 | | (3n+16=2n+16) | | 5(r+3)=3r+35. | | x/6=2x/3+1 | | 21x-6=20 | | -9s=-10s+6 | | 3x+5+6x+10=75 |