2+1x=-15+7/8x

Simple and best practice solution for 2+1x=-15+7/8x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2+1x=-15+7/8x equation:



2+1x=-15+7/8x
We move all terms to the left:
2+1x-(-15+7/8x)=0
Domain of the equation: 8x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1x-(7/8x-15)+2=0
We add all the numbers together, and all the variables
x-(7/8x-15)+2=0
We get rid of parentheses
x-7/8x+15+2=0
We multiply all the terms by the denominator
x*8x+15*8x+2*8x-7=0
Wy multiply elements
8x^2+120x+16x-7=0
We add all the numbers together, and all the variables
8x^2+136x-7=0
a = 8; b = 136; c = -7;
Δ = b2-4ac
Δ = 1362-4·8·(-7)
Δ = 18720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{18720}=\sqrt{144*130}=\sqrt{144}*\sqrt{130}=12\sqrt{130}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(136)-12\sqrt{130}}{2*8}=\frac{-136-12\sqrt{130}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(136)+12\sqrt{130}}{2*8}=\frac{-136+12\sqrt{130}}{16} $

See similar equations:

| f(0)=5f(4)=17 | | |2n+7|=5 | | 5.00x0.65=10.00x.45 | | 9x=7(5x+8) | | 4x=50 | | 5(x+⅖)=5 | | s=180(48-2) | | –2d=–90 | | 4(-3y+1)-3y=-11 | | 3/2(12x-8)=24 | | 122n=15-7n | | 5x+⅖=5 | | 4(x+3)-4=16 | | 420-12x=190.50+5x | | 41=4p+1 | | −8x−8+3(x−2)=−3x+2 | | –8c=7−9c | | 2x–7–23(12x–9)=15 | | b−–34=40 | | (2a)/(3)=(4a)/(5)+7 | | x−3=−19+6xX= | | 6=m/7+3 | | (7x-2)=(2x+13) | | 9-r=24 | | x−3=−19+6x | | -8=-9+k/4 | | 2(x+5)=4x-20 | | 2a=a-3+1 | | 4x−6=9x+12 | | 4m−5m+9=5m−9 | | 250+3s=200+4s | | -10+x/4=-5 |

Equations solver categories