2+1.25f=10-2/75f

Simple and best practice solution for 2+1.25f=10-2/75f equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2+1.25f=10-2/75f equation:



2+1.25f=10-2/75f
We move all terms to the left:
2+1.25f-(10-2/75f)=0
Domain of the equation: 75f)!=0
f!=0/1
f!=0
f∈R
We add all the numbers together, and all the variables
1.25f-(-2/75f+10)+2=0
We get rid of parentheses
1.25f+2/75f-10+2=0
We multiply all the terms by the denominator
(1.25f)*75f-10*75f+2*75f+2=0
We add all the numbers together, and all the variables
(+1.25f)*75f-10*75f+2*75f+2=0
We multiply parentheses
75f^2-10*75f+2*75f+2=0
Wy multiply elements
75f^2-750f+150f+2=0
We add all the numbers together, and all the variables
75f^2-600f+2=0
a = 75; b = -600; c = +2;
Δ = b2-4ac
Δ = -6002-4·75·2
Δ = 359400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{359400}=\sqrt{100*3594}=\sqrt{100}*\sqrt{3594}=10\sqrt{3594}$
$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-600)-10\sqrt{3594}}{2*75}=\frac{600-10\sqrt{3594}}{150} $
$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-600)+10\sqrt{3594}}{2*75}=\frac{600+10\sqrt{3594}}{150} $

See similar equations:

| y=95+5.25 | | -(1+2x)=29+4x | | 60=3/h | | 4(5)^x=68 | | 4+x-4-2=1+4x | | 13-5p=3(-p+7) | | -30-6r=-36r | | -3(3x+9=-2(4x+5 | | 7x-92x=6 | | x3+3x=25 | | 5x-7-2=2x-(x-8)+3x-7 | | w+4/5=4(1/4) | | 1+3+3h=12 | | -2(m-6)=-12-6 | | 3n²+5n=62 | | -35+5x=-5(-5-4x) | | 7z=1410 | | 3k=35.80 | | 5u−4u=13 | | -4n-7=7-4 | | 4(5c+3=9c+7 | | -2.5y-15=25 | | 3(3+4p)=3p-27 | | d–15=7 | | 109=3(3-4n)+4* | | 340=100h | | 11=m-(-4) | | -4n-7=7+6 | | 95=17+b | | 12x.2+192=0 | | m-8-8m=13* | | a/36=0.9/100 |

Equations solver categories