2*(4-x)=7x-3x*(x-2)

Simple and best practice solution for 2*(4-x)=7x-3x*(x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2*(4-x)=7x-3x*(x-2) equation:



2(4-x)=7x-3x(x-2)
We move all terms to the left:
2(4-x)-(7x-3x(x-2))=0
We add all the numbers together, and all the variables
2(-1x+4)-(7x-3x(x-2))=0
We multiply parentheses
-2x-(7x-3x(x-2))+8=0
We calculate terms in parentheses: -(7x-3x(x-2)), so:
7x-3x(x-2)
We multiply parentheses
-3x^2+7x+6x
We add all the numbers together, and all the variables
-3x^2+13x
Back to the equation:
-(-3x^2+13x)
We get rid of parentheses
3x^2-13x-2x+8=0
We add all the numbers together, and all the variables
3x^2-15x+8=0
a = 3; b = -15; c = +8;
Δ = b2-4ac
Δ = -152-4·3·8
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{129}}{2*3}=\frac{15-\sqrt{129}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{129}}{2*3}=\frac{15+\sqrt{129}}{6} $

See similar equations:

| 4=2(x-7 | | 10+1000s=2000 | | -2/5x+3=1/5+11 | | 3x+2+5x-4=14 | | 11y+1=-9(4) | | 5x+3+(x-4)=0 | | -4x+104=-200 | | 2n+3(-1+6n)=-103 | | 4x-8=350 | | x+4(1+5x)=156 | | 7(3x5)=2(9x-5) | | 54=4v-14 | | 2(x-1)/3=2(x=2)/6 | | t+4=3t-15 | | 43=2w+17 | | 55b-44b=55 | | 64=1-9u | | 2(x-5)+1=21 | | 9s-2s=84 | | 5(-3x+7)-7=133 | | -2+8+x=8+-10 | | 6x^2-5=-36 | | 6(4−z)=2z | | -1/5q+4=9 | | 7x=3-5(x) | | 20t-6t=42 | | 1/2m+3+3/2m=9 | | 2r-5=r-11 | | 3/16=c/5 | | 2y+1y+6+10=18 | | 9n+8=6n+7 | | 9n+8=6+7 |

Equations solver categories