2(y-6)=3(y-4)y

Simple and best practice solution for 2(y-6)=3(y-4)y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(y-6)=3(y-4)y equation:



2(y-6)=3(y-4)y
We move all terms to the left:
2(y-6)-(3(y-4)y)=0
We multiply parentheses
2y-(3(y-4)y)-12=0
We calculate terms in parentheses: -(3(y-4)y), so:
3(y-4)y
We multiply parentheses
3y^2-12y
Back to the equation:
-(3y^2-12y)
We get rid of parentheses
-3y^2+2y+12y-12=0
We add all the numbers together, and all the variables
-3y^2+14y-12=0
a = -3; b = 14; c = -12;
Δ = b2-4ac
Δ = 142-4·(-3)·(-12)
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{13}}{2*-3}=\frac{-14-2\sqrt{13}}{-6} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{13}}{2*-3}=\frac{-14+2\sqrt{13}}{-6} $

See similar equations:

| 3.6+75t=21600 | | -100=(3n+4/7) | | 16^6x+5=23 | | -67=5-4(-2p+4p | | -7(x+5)-4=-x-3 | | 3.5x-6=5x | | 4x+5+4x-16=5x+22 | | 16^{6x}+5=23 | | 2(4x-3)-8+2x=4 | | 4-8(z-4)=11z-2 | | 3x+3+4x+2=180 | | -63=3(-2r-6)-3r | | 33=7r-16 | | 4-(2x-1)=-1+6x | | 7k-19k=-19 | | 15y+0=15y | | x/28=21/35 | | -63=3(-2r+6)-3r | | x/3 +2=8 | | 3(2x+5)=6x+7 | | 5=2d/7 | | -7x=2x-27 | | 3x-44=34 | | 2(x-5)+9=-5 | | 40/36=10/x | | 22x-11=6x+21 | | 17u+-8u=-18 | | -23+7w=12 | | 4x*1=4x | | 4(3-x)+3(2x-5)=17 | | 3x-6x+5=2x+20 | | 3x+2x+(x-12)+(x+4)=360 |

Equations solver categories