If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(y-1)-6y=10-2y(y-4)
We move all terms to the left:
2(y-1)-6y-(10-2y(y-4))=0
We add all the numbers together, and all the variables
-6y+2(y-1)-(10-2y(y-4))=0
We multiply parentheses
-6y+2y-(10-2y(y-4))-2=0
We calculate terms in parentheses: -(10-2y(y-4)), so:We add all the numbers together, and all the variables
10-2y(y-4)
determiningTheFunctionDomain -2y(y-4)+10
We multiply parentheses
-2y^2+8y+10
Back to the equation:
-(-2y^2+8y+10)
-(-2y^2+8y+10)-4y-2=0
We get rid of parentheses
2y^2-8y-4y-10-2=0
We add all the numbers together, and all the variables
2y^2-12y-12=0
a = 2; b = -12; c = -12;
Δ = b2-4ac
Δ = -122-4·2·(-12)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{15}}{2*2}=\frac{12-4\sqrt{15}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{15}}{2*2}=\frac{12+4\sqrt{15}}{4} $
| 37=w/12 | | y+-3=-7 | | 13+2(5s-2)=29 | | 5(x-1)=3(2x-5)-(1-3x | | 9c+–8c+–9c=–16 | | 8–n=6 | | 2x+10=x-2=4x-28 | | 8m+5m=6m-5 | | 53=0.35x | | –5x–16=x–16 | | 2a+9=6a+7 | | 12x-15=9x-24 | | 2m-6=8-5m | | 9-2(y-5)=y+10 | | 12x-15°=9x+24° | | $2.10=$4.05-y | | 3x2-4x+6;x=-3 | | -37x=23 | | 1.5(8+x)=22 | | n÷8.3=5 | | X-18;x=32 | | 8p^2+4p=1 | | 37x=-23 | | F(10)=x-9 | | 0.75x-x=20-30 | | 1.036=10x | | 23.2+n=69.07 | | -20/x=10/6 | | 7(3+4q)=42 | | -10-x=-3 | | 6x-29=3x+10 | | 40+55x=315 |