2(x-6)=4x(2x+12)

Simple and best practice solution for 2(x-6)=4x(2x+12) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x-6)=4x(2x+12) equation:



2(x-6)=4x(2x+12)
We move all terms to the left:
2(x-6)-(4x(2x+12))=0
We multiply parentheses
2x-(4x(2x+12))-12=0
We calculate terms in parentheses: -(4x(2x+12)), so:
4x(2x+12)
We multiply parentheses
8x^2+48x
Back to the equation:
-(8x^2+48x)
We get rid of parentheses
-8x^2+2x-48x-12=0
We add all the numbers together, and all the variables
-8x^2-46x-12=0
a = -8; b = -46; c = -12;
Δ = b2-4ac
Δ = -462-4·(-8)·(-12)
Δ = 1732
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1732}=\sqrt{4*433}=\sqrt{4}*\sqrt{433}=2\sqrt{433}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-46)-2\sqrt{433}}{2*-8}=\frac{46-2\sqrt{433}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-46)+2\sqrt{433}}{2*-8}=\frac{46+2\sqrt{433}}{-16} $

See similar equations:

| 2x+5/7=x/6 | | 8(5x+8)=6x | | x/8-2=-10 | | 11(y−2)+3y=−7y+14 | | (-16x+13)+(20x+13)=180 | | 4x+2(-5+3x)=1-x | | 64=8x+16 | | -29=1y-3 | | -16x+13+20x+13=180 | | 15x^2+x=-6 | | 160+.20x=80+.30x | | 12u-7u=5 | | 5-3x/4=10 | | 9y–1=y–25 | | 0.5(10x-2)+3=14 | | 6x/8=3 | | 5b+6b=4b+b | | 7+9x=10+8x | | (3x+25)=(x-25) | | -9(x-2)=-72 | | x/​2+8=6 | | 4/5x+8=5/6x | | (7x+24)=(2x+9) | | 18=y|14 | | 25=27x-18 | | 18=y|4 | | (7x-4)=(3x+14) | | 2.5=x-4/1.2 | | y=0.08+12 | | X+2x+2x-40°=180° | | -3x-12+5x-19=-4 | | -8x=6x+6 |

Equations solver categories