2(x-5)-2/x-1)=-x-1

Simple and best practice solution for 2(x-5)-2/x-1)=-x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x-5)-2/x-1)=-x-1 equation:



2(x-5)-2/x-1)=-x-1
We move all terms to the left:
2(x-5)-2/x-1)-(-x-1)=0
Domain of the equation: x!=0
x∈R
We add all the numbers together, and all the variables
-1x+2(x-5)-2/x=0
We multiply parentheses
-1x+2x-2/x-10=0
We multiply all the terms by the denominator
-1x*x+2x*x-10*x-2=0
We add all the numbers together, and all the variables
-10x-1x*x+2x*x-2=0
Wy multiply elements
-1x^2+2x^2-10x-2=0
We add all the numbers together, and all the variables
x^2-10x-2=0
a = 1; b = -10; c = -2;
Δ = b2-4ac
Δ = -102-4·1·(-2)
Δ = 108
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{108}=\sqrt{36*3}=\sqrt{36}*\sqrt{3}=6\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-6\sqrt{3}}{2*1}=\frac{10-6\sqrt{3}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+6\sqrt{3}}{2*1}=\frac{10+6\sqrt{3}}{2} $

See similar equations:

| 8x+1=4(2x-7) | | -38-(-13)=x/7 | | (3/5)n+2=17 | | 2(c=3)(c+2) | | X=2y+.75 | | 5x^2+3=9 | | 8b^2+41b+15=-6b^2 | | -5(v-3)=2v-34 | | X+4/3-2x+1/9=1/3x+2-2/9x | | 5x=15=55 | | 0.004(7-k)+0.09(k-5)=1 | | 6x-41/2=5x | | 47.94t=27.44t-61.5 | | 4.9t^2+14t-39=0 | | 5x^2=9-3x | | 31+4y-11=14y-12-2y | | 6.25+2.25h=3.5h | | 0.008(6-k)+0.03(k-7)=1 | | 8^3x=1/4 | | 17=x=-6 | | 17=x-16 | | 3(v+4)=-3(6v-2)+3v | | x=3√1331 | | 4(5g-20)-20g+80=0 | | x3=878+453=1331 | | 9k-15=3(3k-7) | | x-12-9x=3x-7-11x | | -y/4=5 | | 3x-2(1-x)=4(3x-5)+6(3-2x) | | 65-5k=8k | | 96x+6=x+96 | | 5m+25+m=-5 |

Equations solver categories