If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(x-3)(x+3)-(3x+4)=x(2x-5)-18
We move all terms to the left:
2(x-3)(x+3)-(3x+4)-(x(2x-5)-18)=0
We use the square of the difference formula
x^2-(3x+4)-(x(2x-5)-18)-9=0
We get rid of parentheses
x^2-3x-(x(2x-5)-18)-4-9=0
We calculate terms in parentheses: -(x(2x-5)-18), so:We add all the numbers together, and all the variables
x(2x-5)-18
We multiply parentheses
2x^2-5x-18
Back to the equation:
-(2x^2-5x-18)
x^2-3x-(2x^2-5x-18)-13=0
We get rid of parentheses
x^2-2x^2-3x+5x+18-13=0
We add all the numbers together, and all the variables
-1x^2+2x+5=0
a = -1; b = 2; c = +5;
Δ = b2-4ac
Δ = 22-4·(-1)·5
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{6}}{2*-1}=\frac{-2-2\sqrt{6}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{6}}{2*-1}=\frac{-2+2\sqrt{6}}{-2} $
| 2y-20=8(y-8) | | 2x+(3x-51)=180 | | 2w+5=8w-31 | | 6p+13=6p+5 | | 180-(3r+12)=0 | | 2/3x+1/3=8/3 | | 725x-3,x=16 | | (2x+20)=(13x+15) | | 33y=4428 | | 4v+12=20 | | 1.4x+0.6x=17 | | 1.7a+31=37.8 | | -24-8x=-11x+10 | | (7+13x)=(-20+16x) | | m1=4m2=2y+18 | | 2=r+5-7 | | w+76=40 | | n/3.5-12=-6 | | 1/7b-56=14 | | 3x+5-13x=35 | | -181-14x=115-6x | | .25d+2=3 | | h+6=-31 | | n/12+2=5 | | 8k+2+4K=8k+10 | | 7x-20=40+x | | 2x-3=6+-1x | | h-56=-26 | | Y/11=4m | | 8x3-60x2+150x-854=0 | | (1/4)(8w-4^2)=0 | | r-22=39 |