2(x-2)-5x(x-5)=4(x-8)-2(x-2)

Simple and best practice solution for 2(x-2)-5x(x-5)=4(x-8)-2(x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x-2)-5x(x-5)=4(x-8)-2(x-2) equation:



2(x-2)-5x(x-5)=4(x-8)-2(x-2)
We move all terms to the left:
2(x-2)-5x(x-5)-(4(x-8)-2(x-2))=0
We multiply parentheses
-5x^2+2x+25x-(4(x-8)-2(x-2))-4=0
We calculate terms in parentheses: -(4(x-8)-2(x-2)), so:
4(x-8)-2(x-2)
We multiply parentheses
4x-2x-32+4
We add all the numbers together, and all the variables
2x-28
Back to the equation:
-(2x-28)
We add all the numbers together, and all the variables
-5x^2+27x-(2x-28)-4=0
We get rid of parentheses
-5x^2+27x-2x+28-4=0
We add all the numbers together, and all the variables
-5x^2+25x+24=0
a = -5; b = 25; c = +24;
Δ = b2-4ac
Δ = 252-4·(-5)·24
Δ = 1105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-\sqrt{1105}}{2*-5}=\frac{-25-\sqrt{1105}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+\sqrt{1105}}{2*-5}=\frac{-25+\sqrt{1105}}{-10} $

See similar equations:

| 3x+1/2x=4 | | 6/s​−9=−5 | | 12-x=5+7(x-2) | | 10s+5s=0 | | 8x-33=x+9 | | 10x+1=4x+55 | | -3x-20=-6x-2 | | 3x+43=55+x | | 3x…-7=-10 | | x+13=50-2x | | 5x–5= | | 2x-(2-7X)²=(1-7X)(1+7x) | | (38-7x)/5=Y | | 1000(6x−10)=20(1720+100x) | | 19-4d=17 | | 2(3x-5)=-20 | | 1/2d-9=-25 | | 12m-12=7m+13 | | 1x1x1x1=1 | | 2/5x+3=23 | | 1x1x1=1 | | (5x-2)=67-(2x+6) | | 〖2x〗2+10x+20=0 | | 1x9=9 | | 1x8=8 | | 7-3|a|/2=1 | | 1x6=6 | | {3x-7}{2x+4}=0 | | X^2-66x+920=0 | | 2z+-11=6 | | -7+6k=30 | | 0.6*p=p-32 |

Equations solver categories