If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(x-1)/3(x+1)=3/2
We move all terms to the left:
2(x-1)/3(x+1)-(3/2)=0
Domain of the equation: 3(x+1)!=0We add all the numbers together, and all the variables
x∈R
2(x-1)/3(x+1)-(+3/2)=0
We get rid of parentheses
2(x-1)/3(x+1)-3/2=0
We calculate fractions
(4x-4)/(6x+6)+(-9xx/(6x+6)=0
We calculate terms in parentheses: +(-9xx/(6x+6), so:We get rid of parentheses
-9xx/(6x+6
We multiply all the terms by the denominator
-9xx
Back to the equation:
+(-9xx)
(4x-4)/(6x+6)-9xx=0
We multiply all the terms by the denominator
(4x-4)-9xx*(6x+6)=0
We multiply parentheses
-54x^2+(4x-4)-54x=0
We get rid of parentheses
-54x^2+4x-54x-4=0
We add all the numbers together, and all the variables
-54x^2-50x-4=0
a = -54; b = -50; c = -4;
Δ = b2-4ac
Δ = -502-4·(-54)·(-4)
Δ = 1636
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1636}=\sqrt{4*409}=\sqrt{4}*\sqrt{409}=2\sqrt{409}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{409}}{2*-54}=\frac{50-2\sqrt{409}}{-108} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{409}}{2*-54}=\frac{50+2\sqrt{409}}{-108} $
| x+0.2x=978179.04 | | x+0.2x=978,179.04 | | 6/2x+1=4/4x+1 | | 6x-3x=16-5x | | x2+3=12 | | 6x-3x=17-5x | | 12-5x=-8x | | (x+8)+3x=5(x-2)-4x+9 | | 38=-3x+50 | | 3x-6(x-5)=0 | | x-0,25=24 | | 5x-7)/3=15 | | 6(4y+3)-7y=11 | | (D^6+18D^4+81D^2)y=0 | | 24y+18-7y=11 | | 0,6x=0,34 | | (x^2+5)^2=144 | | 6-8x=-25 | | x²+3x=180 | | 2(4x-1)-3(x+2)=12 | | 8x-2-3x-6=12 | | 3-5+3x2=-8 | | 4×-7y=10 | | X+2x+(2x-8)+(x-8)=122 | | 4x-8=15-5x | | 5h+7=27 | | X+8=78-13x | | 4(x+6)=68 | | 4(x+6)=684(x+6)=68 | | -x+x+6=0 | | 8(2-g=10 | | |x|=–1 |