2(x-1)+6x=4/2x-+2

Simple and best practice solution for 2(x-1)+6x=4/2x-+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x-1)+6x=4/2x-+2 equation:



2(x-1)+6x=4/2x-+2
We move all terms to the left:
2(x-1)+6x-(4/2x-+2)=0
Domain of the equation: 2x-+2)!=0
x∈R
We add all the numbers together, and all the variables
2(x-1)+6x-(+4/2x)=0
We add all the numbers together, and all the variables
6x+2(x-1)-(+4/2x)=0
We multiply parentheses
6x+2x-(+4/2x)-2=0
We get rid of parentheses
6x+2x-4/2x-2=0
We multiply all the terms by the denominator
6x*2x+2x*2x-2*2x-4=0
Wy multiply elements
12x^2+4x^2-4x-4=0
We add all the numbers together, and all the variables
16x^2-4x-4=0
a = 16; b = -4; c = -4;
Δ = b2-4ac
Δ = -42-4·16·(-4)
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{17}}{2*16}=\frac{4-4\sqrt{17}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{17}}{2*16}=\frac{4+4\sqrt{17}}{32} $

See similar equations:

| 16x^2+144x+160=0 | | T=3s+19.17 | | z-(3/5)=-1/4 | | -3+z/4=12 | | 12x−7=−25 | | 4x+35=x+10 | | 360=68+(6y-118) | | n-7=194 | | 2(5x-10)=13x-5+2x-30 | | z/7=-3 | | h-9=28 | | 1=2w−3 | | -1(-8m+4)=4m-2(6m+2) | | 3x-25+x-15+2x+28=180 | | 2x=1÷128 | | 0+7=7b | | X^2-0.45x+0.0045=0 | | 360=180+(6y-118) | | d+5=-53 | | 552.26=230+1.23x | | -1=2c−17 | | 5x-(9x-14)=3(x+10)-2 | | 7x-12x=10 | | 5x=- | | 2(t-3)+4=2(2t-5) | | 7z+4(2z+3)=(60z-24)/2 | | 10p+5=18p-62 | | -8f=-64 | | 3(3c+4)=7c+2c-8 | | 10x-19x=54 | | (3/×+1)-1/2=(1/3x+3) | | C=39.25+0.25x |

Equations solver categories