2(x+7)=3/48x+4

Simple and best practice solution for 2(x+7)=3/48x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x+7)=3/48x+4 equation:



2(x+7)=3/48x+4
We move all terms to the left:
2(x+7)-(3/48x+4)=0
Domain of the equation: 48x+4)!=0
x∈R
We multiply parentheses
2x-(3/48x+4)+14=0
We get rid of parentheses
2x-3/48x-4+14=0
We multiply all the terms by the denominator
2x*48x-4*48x+14*48x-3=0
Wy multiply elements
96x^2-192x+672x-3=0
We add all the numbers together, and all the variables
96x^2+480x-3=0
a = 96; b = 480; c = -3;
Δ = b2-4ac
Δ = 4802-4·96·(-3)
Δ = 231552
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{231552}=\sqrt{576*402}=\sqrt{576}*\sqrt{402}=24\sqrt{402}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(480)-24\sqrt{402}}{2*96}=\frac{-480-24\sqrt{402}}{192} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(480)+24\sqrt{402}}{2*96}=\frac{-480+24\sqrt{402}}{192} $

See similar equations:

| 4w-9=21 | | 21+2xx=-2 | | x+8+3x+10+5x+5+x=180 | | 362=2l+198 | | 28=2(x+8)-4 | | -2/7(1/5)=y | | 7.8/c=0.82 | | 10x+2=4x-9 | | 33/x=97 | | 3x+6-9x=x+27 | | b11=4;b=44 | | 9x=8×+17 | | 5=y(5) | | 5=2a-3 | | 2x+4(x-7)=44 | | 13q-13q+3q+2=14 | | ^x4+7=23 | | ^x4+7)=23 | | c-10=-13 | | 4x+10=2x-1 | | -2(x+4)+1=4(x-3)+6 | | x4^+7)=23 | | -1=s+7 | | -4(4x-9)=2 | | f21=28 | | (m/7)+2=–14 | | d4=18 | | 15x+24=1/2x+5 | | -6-4x+17=3(-x-6) | | 12+6x=99 | | 13-s=17 | | (x/6)+20=28 |

Equations solver categories