2(x+5)=5x(x-4)

Simple and best practice solution for 2(x+5)=5x(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x+5)=5x(x-4) equation:



2(x+5)=5x(x-4)
We move all terms to the left:
2(x+5)-(5x(x-4))=0
We multiply parentheses
2x-(5x(x-4))+10=0
We calculate terms in parentheses: -(5x(x-4)), so:
5x(x-4)
We multiply parentheses
5x^2-20x
Back to the equation:
-(5x^2-20x)
We get rid of parentheses
-5x^2+2x+20x+10=0
We add all the numbers together, and all the variables
-5x^2+22x+10=0
a = -5; b = 22; c = +10;
Δ = b2-4ac
Δ = 222-4·(-5)·10
Δ = 684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{684}=\sqrt{36*19}=\sqrt{36}*\sqrt{19}=6\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-6\sqrt{19}}{2*-5}=\frac{-22-6\sqrt{19}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+6\sqrt{19}}{2*-5}=\frac{-22+6\sqrt{19}}{-10} $

See similar equations:

| 40=(4/5)u | | 16.75-17.2v-0.48=0.07-19.9v | | n/9=24/26 | | 75.99+x=89.84 | | 5/9c+32=68 | | 2x5=7+ | | 4.2x-22=3.6x | | 3(x-6)=4(x-4) | |   x+22=41 | | -22+s=-53 | | 126-(6x+5)=6(x+5)+x | | 15^(x+2)=11 | | 15^x+2=11 | | 80-(5x-12)=5(x+7)+x | | 96.15=x-0.3x | | 6/5+5m/8=83/40 | | -1/2+2/5v=-1/3 | | 2x+15+10=x+18 | | x*1.3=138544 | | 48+6x=96 | | 132-12+6y+18=180 | | 1000=x-0.3x | | -17+x=x+29 | | 12=-4(-6x+7) | | 8n-22=13+n | | 6+15p-4=5p+62-2p | | 3y-2²=2-y² | | (3y-2)²=(2-y)² | | 5/u=11/7 | | 3=-(1/2)x-6 | | 49-x2=0 | | 14x-5=6×+14 |

Equations solver categories