2(x+2)=(x-1)(x+2)

Simple and best practice solution for 2(x+2)=(x-1)(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x+2)=(x-1)(x+2) equation:



2(x+2)=(x-1)(x+2)
We move all terms to the left:
2(x+2)-((x-1)(x+2))=0
We multiply parentheses
2x-((x-1)(x+2))+4=0
We multiply parentheses ..
-((+x^2+2x-1x-2))+2x+4=0
We calculate terms in parentheses: -((+x^2+2x-1x-2)), so:
(+x^2+2x-1x-2)
We get rid of parentheses
x^2+2x-1x-2
We add all the numbers together, and all the variables
x^2+x-2
Back to the equation:
-(x^2+x-2)
We add all the numbers together, and all the variables
2x-(x^2+x-2)+4=0
We get rid of parentheses
-x^2+2x-x+2+4=0
We add all the numbers together, and all the variables
-1x^2+x+6=0
a = -1; b = 1; c = +6;
Δ = b2-4ac
Δ = 12-4·(-1)·6
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{25}=5$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-5}{2*-1}=\frac{-6}{-2} =+3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+5}{2*-1}=\frac{4}{-2} =-2 $

See similar equations:

| √​z​2​​−8​​​−√​6z−17​​​=0 | | J(x)=x-5 | | 8/1x=7/12x | | (5+x)(4+x)=132 | | 172.98=6(0.05m+22.8+0.1(22.8) | | (x–3)^2–32=17 | | 33+77=x | | x^2+9x=112 | | -4(2-r)=24 | | 5-3x^2=70 | | -2{x-(5-4x)}+4=3x | | 7a+2=18 | | 4(r-5)-3(r-1)=2(r+4) | | -3x^2+2.5X+275=0 | | 60x+15-42x+126=105 | | -24=-3(2x-8) | | 8=8.4÷x= | | -99(x+3)+4=58 | | 12x-18=8x+10=180 | | 12x-18=8x+1012=180 | | 500+b=123 | | 7h=−(2h−18)= | | 0.75x-5.50=10.25 | | 5x2=−40 | | 7x-99=2x+2 | | 60x+15+42x-126=105 | | (x+3)*(15-5X)=0 | | 3/4(8x+12)=63 | | 5x−12=−2+5(x−2)5x-12=-2+5(x-2) | | 13x^2-75x+1800=0 | | 60x+15-42x-126=105 | | .2=10/x |

Equations solver categories