2(x+1/x)2=10-x-1/x

Simple and best practice solution for 2(x+1/x)2=10-x-1/x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x+1/x)2=10-x-1/x equation:



2(x+1/x)2=10-x-1/x
We move all terms to the left:
2(x+1/x)2-(10-x-1/x)=0
Domain of the equation: x)2!=0
x!=0/1
x!=0
x∈R
Domain of the equation: x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
2(+x+1/x)2-(-1x-1/x+10)=0
We multiply parentheses
4x+4x-(-1x-1/x+10)=0
We get rid of parentheses
4x+4x+1x+1/x-10=0
We multiply all the terms by the denominator
4x*x+4x*x+1x*x-10*x+1=0
We add all the numbers together, and all the variables
-10x+4x*x+4x*x+1x*x+1=0
Wy multiply elements
4x^2+4x^2+x^2-10x+1=0
We add all the numbers together, and all the variables
9x^2-10x+1=0
a = 9; b = -10; c = +1;
Δ = b2-4ac
Δ = -102-4·9·1
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{64}=8$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-8}{2*9}=\frac{2}{18} =1/9 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+8}{2*9}=\frac{18}{18} =1 $

See similar equations:

| 10x-8=8x+4,6 | | 8×-2y=52 | | 2+m=0.8+3,5 | | 7(2+d)=-42 | | -6h+21=27-8h | | −8x+8=  −3x+3 | | 3+4d=35 | | 2(4−2d)=d+13 | | F(n)=2n+9 | | 17+4c+2=1-5c | | 4x8(10-7)+12=X | | 5+7f=-2 | | 100.4=1.8x+32 | | 3.5=4-0.006x | | 11w-6=8w+15 | | 5x+4+7=9x+3+5 | | -9=v-12/2 | | -r/3=3 | | 2w²+6w-192=0 | | t=4.25 | | -18=r-14 | | 5(-2a-3)=-10a-15 | | 0=7.2x^2-33.1x+18.3 | | 117=d+86 | | -9(b+3)=42 | | 2/5/12=-3/1/4=k | | -11(x+6)=99 | | (a-3)-5(a+2)=2a | | -4(n+9)=144 | | 1.5x=88/15 | | 11/2x=88/15 | | 9z-9=8 |

Equations solver categories