2(x+1)(x-4)=4(x-2)(x+2)

Simple and best practice solution for 2(x+1)(x-4)=4(x-2)(x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x+1)(x-4)=4(x-2)(x+2) equation:



2(x+1)(x-4)=4(x-2)(x+2)
We move all terms to the left:
2(x+1)(x-4)-(4(x-2)(x+2))=0
We use the square of the difference formula
x^2+2(x+1)(x-4)+4=0
We multiply parentheses ..
x^2+2(+x^2-4x+x-4)+4=0
We multiply parentheses
x^2+2x^2-8x+2x-8+4=0
We add all the numbers together, and all the variables
3x^2-6x-4=0
a = 3; b = -6; c = -4;
Δ = b2-4ac
Δ = -62-4·3·(-4)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{21}}{2*3}=\frac{6-2\sqrt{21}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{21}}{2*3}=\frac{6+2\sqrt{21}}{6} $

See similar equations:

| 3(x-3)=2x+9 | | 15=3y+4 | | 18=x/17 | | (x-3)-(x+6)=45 | | 12-8q=3q | | 16t^2-44t=0 | | -4n-2/n=7 | | 15=3(y+1) | | 4x-2(-3x+11)=8 | | 7x+7*5=77 | | 190=10(11+s) | | 2x-7/5=3 | | 13=1/4a•36 | | f/28=23 | | m=3*5+7 | | k-20=-36 | | -2(3x+4=-5x-8-x | | 2((x+4)/(2x-5))-1=0 | | 7x+7*5=35 | | y-3/y+9=3/7 | | 250=5c+100 | | m=5*5-3 | | 8x^2=22+9x | | 5+23*x=37 | | x(28/x)=192 | | m=3*2+7 | | x+3/8+-x/2=5 | | m=5*2-3 | | 1/3(9-6x)=5 | | 4^(3x+5)=12 | | V=πr3. | | -n2=-12 |

Equations solver categories