2(m-2)+6=4(m-1)13m

Simple and best practice solution for 2(m-2)+6=4(m-1)13m equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(m-2)+6=4(m-1)13m equation:



2(m-2)+6=4(m-1)13m
We move all terms to the left:
2(m-2)+6-(4(m-1)13m)=0
We multiply parentheses
2m-(4(m-1)13m)-4+6=0
We calculate terms in parentheses: -(4(m-1)13m), so:
4(m-1)13m
We multiply parentheses
52m^2-52m
Back to the equation:
-(52m^2-52m)
We add all the numbers together, and all the variables
2m-(52m^2-52m)+2=0
We get rid of parentheses
-52m^2+2m+52m+2=0
We add all the numbers together, and all the variables
-52m^2+54m+2=0
a = -52; b = 54; c = +2;
Δ = b2-4ac
Δ = 542-4·(-52)·2
Δ = 3332
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3332}=\sqrt{196*17}=\sqrt{196}*\sqrt{17}=14\sqrt{17}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(54)-14\sqrt{17}}{2*-52}=\frac{-54-14\sqrt{17}}{-104} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(54)+14\sqrt{17}}{2*-52}=\frac{-54+14\sqrt{17}}{-104} $

See similar equations:

| 4x+12=-3(2x+6) | | –4(3x+5)+6=10 | | |x|+2.6=3.6 | | 8x+6=-2x14 | | t-7+90=180 | | 420=15(20+d) | | 4x+12=-2(2x+6) | | 3(x-7)-6x=4x-49 | | 2(3y-4)=0.5(10-y) | | 9s-10=7s+10+4s | | x/2.5-14.7=15.3 | | 9x+3x+15=6x-21 | | 9x^2-12=-120 | | 30=x15 | | 398.35=160+1.05x | | 8+4d=5d | | 5(k)-1=-9+5(k) | | 14x+10x=26 | | 5(k-72)=85 | | 2x+4=2x+1+3 | | 34+8a=1+5(1+3a) | | 2(2g+4)= | | Y=x+x-2-1 | | 12x+6=9x+ | | y+2y+5y-9=23 | | 35+70+x=180 | | –5k−8=8−3k | | 1.4+y/3=-3.4 | | 14(x+-5)=-110 | | 4.8+10m=7.42 | | 3x+x-8=-19 | | 3x+-2=6 |

Equations solver categories