2(m-1)-3(m-1)+2(m-1)=

Simple and best practice solution for 2(m-1)-3(m-1)+2(m-1)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(m-1)-3(m-1)+2(m-1)= equation:


Simplifying
2(m + -1) + -3(m + -1) + 2(m + -1) = 0

Reorder the terms:
2(-1 + m) + -3(m + -1) + 2(m + -1) = 0
(-1 * 2 + m * 2) + -3(m + -1) + 2(m + -1) = 0
(-2 + 2m) + -3(m + -1) + 2(m + -1) = 0

Reorder the terms:
-2 + 2m + -3(-1 + m) + 2(m + -1) = 0
-2 + 2m + (-1 * -3 + m * -3) + 2(m + -1) = 0
-2 + 2m + (3 + -3m) + 2(m + -1) = 0

Reorder the terms:
-2 + 2m + 3 + -3m + 2(-1 + m) = 0
-2 + 2m + 3 + -3m + (-1 * 2 + m * 2) = 0
-2 + 2m + 3 + -3m + (-2 + 2m) = 0

Reorder the terms:
-2 + 3 + -2 + 2m + -3m + 2m = 0

Combine like terms: -2 + 3 = 1
1 + -2 + 2m + -3m + 2m = 0

Combine like terms: 1 + -2 = -1
-1 + 2m + -3m + 2m = 0

Combine like terms: 2m + -3m = -1m
-1 + -1m + 2m = 0

Combine like terms: -1m + 2m = 1m
-1 + 1m = 0

Solving
-1 + 1m = 0

Solving for variable 'm'.

Move all terms containing m to the left, all other terms to the right.

Add '1' to each side of the equation.
-1 + 1 + 1m = 0 + 1

Combine like terms: -1 + 1 = 0
0 + 1m = 0 + 1
1m = 0 + 1

Combine like terms: 0 + 1 = 1
1m = 1

Divide each side by '1'.
m = 1

Simplifying
m = 1

See similar equations:

| -6=-x+12x^2+6 | | 15-13=x/-7 | | y=10y | | 3w^2-39w-90=0 | | 3x+25=3 | | 0.3x+0.1=0.7 | | 33-2y=5 | | 16-42=4(x-2)-6 | | X=38.34+0.50x | | (4x-13)(2x+35)=180 | | 3656/x=1828 | | x^3-1x^2-2x+4=0 | | -5(x+1)-15=18+7 | | M^3+16m=0 | | 4(6x-2)+2(7-4x)=5(3x+5)-3 | | 4x^2+32x+48=0 | | 112+4*m=333 | | 2x+4x=x-1 | | 4x+52+2x-12=180 | | 5(2x+4)=(3x+7) | | (-18/13)=(x/221) | | (n-2)+n=90 | | 21x^2+13x+-20=0 | | 4x^2-9y=-5 | | Y/-4-6=5 | | 2x=(5-2) | | 20=5-(y+6) | | T=l(3+rs) | | -3-9=10x+10-9x | | 3656-x=1828 | | -5x-5x=97-7 | | (6x+5)(3x-8)= |

Equations solver categories