2(a-4)=-4a(2a+4)

Simple and best practice solution for 2(a-4)=-4a(2a+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(a-4)=-4a(2a+4) equation:



2(a-4)=-4a(2a+4)
We move all terms to the left:
2(a-4)-(-4a(2a+4))=0
We multiply parentheses
2a-(-4a(2a+4))-8=0
We calculate terms in parentheses: -(-4a(2a+4)), so:
-4a(2a+4)
We multiply parentheses
-8a^2-16a
Back to the equation:
-(-8a^2-16a)
We get rid of parentheses
8a^2+16a+2a-8=0
We add all the numbers together, and all the variables
8a^2+18a-8=0
a = 8; b = 18; c = -8;
Δ = b2-4ac
Δ = 182-4·8·(-8)
Δ = 580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{580}=\sqrt{4*145}=\sqrt{4}*\sqrt{145}=2\sqrt{145}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{145}}{2*8}=\frac{-18-2\sqrt{145}}{16} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{145}}{2*8}=\frac{-18+2\sqrt{145}}{16} $

See similar equations:

| 4x+6=2(3x+4) | | 4x+10=7x11 | | 3(2-5x)=166 | | -5c-4c=-25 | | 5=2(x-2)=19 | | 2/7n=20 | | 2m+12=3m-21 | | -40=-2(3n-4)= | | -2(3x-3=4(x-1 | | (u-8)*9=27 | | 25k130=330 | | z/4+6=-2 | | 8(x-4)=(x+1) | | 6x=x-36 | | 2/3(3x+3)+2(2x+4)=34 | | 5(−x−5)=-56x+49 | | -4-8(1+4x)=-236 | | 6r-8=86r | | -5=2x*11 | | 3.5z+6z=30.5 | | 5x-5=3x9 | | Y=30000+850x | | 39.2=4.9y | | 1x+.85=3.50x+5 | | 5(x+6)=-80 | | 130-x=245 | | 6x-9+2x+61=90 | | 9u=5+10u | | 8(x-1)-4=14 | | 7c+3=3=7c | | 3(a+5)=9 | | -1=s/2+6 |

Equations solver categories