2(7+5)=2x(4x-3)

Simple and best practice solution for 2(7+5)=2x(4x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(7+5)=2x(4x-3) equation:



2(7+5)=2x(4x-3)
We move all terms to the left:
2(7+5)-(2x(4x-3))=0
We add all the numbers together, and all the variables
-(2x(4x-3))+212=0
We calculate terms in parentheses: -(2x(4x-3)), so:
2x(4x-3)
We multiply parentheses
8x^2-6x
Back to the equation:
-(8x^2-6x)
We get rid of parentheses
-8x^2+6x+212=0
a = -8; b = 6; c = +212;
Δ = b2-4ac
Δ = 62-4·(-8)·212
Δ = 6820
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6820}=\sqrt{4*1705}=\sqrt{4}*\sqrt{1705}=2\sqrt{1705}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{1705}}{2*-8}=\frac{-6-2\sqrt{1705}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{1705}}{2*-8}=\frac{-6+2\sqrt{1705}}{-16} $

See similar equations:

| -5w-17=-82 | | X+u=35 | | 3.3(4x-10)=-18 | | x^2-9+3x=3x | | 2-2x=9-3x | | 7w+35=105 | | 5b-10=3b+5 | | 16x-10+67=360 | | 5x+53=x+21 | | 133=1/2h(19) | | -7(x-19)=-126 | | (6x+8x)-2=68 | | 1+1b=19b+12 | | 1/2(x-8)+2=6 | | 10x+20(49-x)=720 | | 8-(3x+4)=-17 | | 5(3x-2)=5(4×+1) | | X/3-4=x/2 | | n+61=−2n+7 | | (5x+3)=6x-3 | | 1,900=(x+20)19 | | 5=n−575 | | 7z-82=-15 | | 14x-6-11x=22 | | p−177=7p+9 | | -8-5p=0 | | 3u+14=98 | | 3x+4-15x/4=58 | | 179.05=(0.05n+0.20(26.80)) | | -3x-3=x+33 | | x-3.85=6.74 | | (x+2)(x-2)(x+6)(x-6)=-156 |

Equations solver categories