2(6z-3)(5+4z)=(12z-5)(2z+1)

Simple and best practice solution for 2(6z-3)(5+4z)=(12z-5)(2z+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(6z-3)(5+4z)=(12z-5)(2z+1) equation:


Simplifying
2(6z + -3)(5 + 4z) = (12z + -5)(2z + 1)

Reorder the terms:
2(-3 + 6z)(5 + 4z) = (12z + -5)(2z + 1)

Multiply (-3 + 6z) * (5 + 4z)
2(-3(5 + 4z) + 6z * (5 + 4z)) = (12z + -5)(2z + 1)
2((5 * -3 + 4z * -3) + 6z * (5 + 4z)) = (12z + -5)(2z + 1)
2((-15 + -12z) + 6z * (5 + 4z)) = (12z + -5)(2z + 1)
2(-15 + -12z + (5 * 6z + 4z * 6z)) = (12z + -5)(2z + 1)
2(-15 + -12z + (30z + 24z2)) = (12z + -5)(2z + 1)

Combine like terms: -12z + 30z = 18z
2(-15 + 18z + 24z2) = (12z + -5)(2z + 1)
(-15 * 2 + 18z * 2 + 24z2 * 2) = (12z + -5)(2z + 1)
(-30 + 36z + 48z2) = (12z + -5)(2z + 1)

Reorder the terms:
-30 + 36z + 48z2 = (-5 + 12z)(2z + 1)

Reorder the terms:
-30 + 36z + 48z2 = (-5 + 12z)(1 + 2z)

Multiply (-5 + 12z) * (1 + 2z)
-30 + 36z + 48z2 = (-5(1 + 2z) + 12z * (1 + 2z))
-30 + 36z + 48z2 = ((1 * -5 + 2z * -5) + 12z * (1 + 2z))
-30 + 36z + 48z2 = ((-5 + -10z) + 12z * (1 + 2z))
-30 + 36z + 48z2 = (-5 + -10z + (1 * 12z + 2z * 12z))
-30 + 36z + 48z2 = (-5 + -10z + (12z + 24z2))

Combine like terms: -10z + 12z = 2z
-30 + 36z + 48z2 = (-5 + 2z + 24z2)

Solving
-30 + 36z + 48z2 = -5 + 2z + 24z2

Solving for variable 'z'.

Reorder the terms:
-30 + 5 + 36z + -2z + 48z2 + -24z2 = -5 + 2z + 24z2 + 5 + -2z + -24z2

Combine like terms: -30 + 5 = -25
-25 + 36z + -2z + 48z2 + -24z2 = -5 + 2z + 24z2 + 5 + -2z + -24z2

Combine like terms: 36z + -2z = 34z
-25 + 34z + 48z2 + -24z2 = -5 + 2z + 24z2 + 5 + -2z + -24z2

Combine like terms: 48z2 + -24z2 = 24z2
-25 + 34z + 24z2 = -5 + 2z + 24z2 + 5 + -2z + -24z2

Reorder the terms:
-25 + 34z + 24z2 = -5 + 5 + 2z + -2z + 24z2 + -24z2

Combine like terms: -5 + 5 = 0
-25 + 34z + 24z2 = 0 + 2z + -2z + 24z2 + -24z2
-25 + 34z + 24z2 = 2z + -2z + 24z2 + -24z2

Combine like terms: 2z + -2z = 0
-25 + 34z + 24z2 = 0 + 24z2 + -24z2
-25 + 34z + 24z2 = 24z2 + -24z2

Combine like terms: 24z2 + -24z2 = 0
-25 + 34z + 24z2 = 0

Begin completing the square.  Divide all terms by
24 the coefficient of the squared term: 

Divide each side by '24'.
-1.041666667 + 1.416666667z + z2 = 0

Move the constant term to the right:

Add '1.041666667' to each side of the equation.
-1.041666667 + 1.416666667z + 1.041666667 + z2 = 0 + 1.041666667

Reorder the terms:
-1.041666667 + 1.041666667 + 1.416666667z + z2 = 0 + 1.041666667

Combine like terms: -1.041666667 + 1.041666667 = 0.000000000
0.000000000 + 1.416666667z + z2 = 0 + 1.041666667
1.416666667z + z2 = 0 + 1.041666667

Combine like terms: 0 + 1.041666667 = 1.041666667
1.416666667z + z2 = 1.041666667

The z term is 1.416666667z.  Take half its coefficient (0.7083333335).
Square it (0.5017361113) and add it to both sides.

Add '0.5017361113' to each side of the equation.
1.416666667z + 0.5017361113 + z2 = 1.041666667 + 0.5017361113

Reorder the terms:
0.5017361113 + 1.416666667z + z2 = 1.041666667 + 0.5017361113

Combine like terms: 1.041666667 + 0.5017361113 = 1.5434027783
0.5017361113 + 1.416666667z + z2 = 1.5434027783

Factor a perfect square on the left side:
(z + 0.7083333335)(z + 0.7083333335) = 1.5434027783

Calculate the square root of the right side: 1.242337627

Break this problem into two subproblems by setting 
(z + 0.7083333335) equal to 1.242337627 and -1.242337627.

Subproblem 1

z + 0.7083333335 = 1.242337627 Simplifying z + 0.7083333335 = 1.242337627 Reorder the terms: 0.7083333335 + z = 1.242337627 Solving 0.7083333335 + z = 1.242337627 Solving for variable 'z'. Move all terms containing z to the left, all other terms to the right. Add '-0.7083333335' to each side of the equation. 0.7083333335 + -0.7083333335 + z = 1.242337627 + -0.7083333335 Combine like terms: 0.7083333335 + -0.7083333335 = 0.0000000000 0.0000000000 + z = 1.242337627 + -0.7083333335 z = 1.242337627 + -0.7083333335 Combine like terms: 1.242337627 + -0.7083333335 = 0.5340042935 z = 0.5340042935 Simplifying z = 0.5340042935

Subproblem 2

z + 0.7083333335 = -1.242337627 Simplifying z + 0.7083333335 = -1.242337627 Reorder the terms: 0.7083333335 + z = -1.242337627 Solving 0.7083333335 + z = -1.242337627 Solving for variable 'z'. Move all terms containing z to the left, all other terms to the right. Add '-0.7083333335' to each side of the equation. 0.7083333335 + -0.7083333335 + z = -1.242337627 + -0.7083333335 Combine like terms: 0.7083333335 + -0.7083333335 = 0.0000000000 0.0000000000 + z = -1.242337627 + -0.7083333335 z = -1.242337627 + -0.7083333335 Combine like terms: -1.242337627 + -0.7083333335 = -1.9506709605 z = -1.9506709605 Simplifying z = -1.9506709605

Solution

The solution to the problem is based on the solutions from the subproblems. z = {0.5340042935, -1.9506709605}

See similar equations:

| 2*(x-5)(x-1)=0 | | 6x+5y-7=0 | | 15y+6x=3 | | 7xX-2=5 | | 20=2(2w+w) | | ((-1+i)*x^2)+2*x+3-i=0 | | 0.5(x/10-3)=-1.25 | | 4x+12=8-x | | 5/x-12=18 | | 4(1-2x)=2(11-2x) | | 5X+9=10X-21 | | -3w-7w= | | 4c^2-4c+8=0 | | 3x=4+44 | | 3x+6y=2y-11x | | (5x-3)/4=3 | | 7h+8=16 | | e^10x-12e^5x+35=0 | | log(base)3(4x+10)=log(base)3(x+1) | | 4/9x=-24 | | 5/9x=-30 | | 16=-4/9x | | -3/4x=9/2 | | -71/2z=-30 | | -3/7n=6/13 | | -3/5k=9/11 | | x=166+z+-1y | | x=166+y+-1z | | x+z-y=166 | | 10a^2x^2+11ax-6=0 | | x+y-z=192 | | 4x+x^2+12-4+2x=0 |

Equations solver categories