2(6x+4)-6+2x=3x(4x+3)+1

Simple and best practice solution for 2(6x+4)-6+2x=3x(4x+3)+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(6x+4)-6+2x=3x(4x+3)+1 equation:



2(6x+4)-6+2x=3x(4x+3)+1
We move all terms to the left:
2(6x+4)-6+2x-(3x(4x+3)+1)=0
We add all the numbers together, and all the variables
2x+2(6x+4)-(3x(4x+3)+1)-6=0
We multiply parentheses
2x+12x-(3x(4x+3)+1)+8-6=0
We calculate terms in parentheses: -(3x(4x+3)+1), so:
3x(4x+3)+1
We multiply parentheses
12x^2+9x+1
Back to the equation:
-(12x^2+9x+1)
We add all the numbers together, and all the variables
14x-(12x^2+9x+1)+2=0
We get rid of parentheses
-12x^2+14x-9x-1+2=0
We add all the numbers together, and all the variables
-12x^2+5x+1=0
a = -12; b = 5; c = +1;
Δ = b2-4ac
Δ = 52-4·(-12)·1
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{73}}{2*-12}=\frac{-5-\sqrt{73}}{-24} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{73}}{2*-12}=\frac{-5+\sqrt{73}}{-24} $

See similar equations:

| x+7.8=9.8 | | 10-5x+2=10x+5-11x | | 2x+8-9x=7+2x-9 | | 4(5+x)=4x+5x | | -3x-8=-20-3x | | 2x-5x=1+3x-6 | | 2x-5x=3x-6 | | 2x-5x=13x-6 | | 5-3y=13 | | 2X^3-9x+12=0 | | -4+3x=-16=24x | | -6+5(2+x)=2.5x-3 | | (x-(x*0.05)+56)=(x+(x*0.25)) | | 5(2+x)=8x | | 16x+5=23 | | 2x-2+x=91 | | 9+3d=8 | | 1/4x-43.8=10 | | ((x-0.05x)+56)-(x-0.05x)=56 | | 15-45=3(x-4)-3 | | -3x+108=15 | | 2n+5=3(3n-10) | | 2-2=16x+4x | | 5x-3÷4=3 | | x+56=x+0.25x | | 1-13=z | | x+56=x+(x*0.25) | | x/11=-2 | | 15x+0=9 | | x+56=x*0.25 | | x-0.05x+x-0.05x+56=x+0.25x | | 12x-5=50 |

Equations solver categories