2(6p)=2(1/2)(4p+8)

Simple and best practice solution for 2(6p)=2(1/2)(4p+8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(6p)=2(1/2)(4p+8) equation:



2(6p)=2(1/2)(4p+8)
We move all terms to the left:
2(6p)-(2(1/2)(4p+8))=0
Domain of the equation: 2)(4p+8))!=0
p∈R
We add all the numbers together, and all the variables
26p-(2(+1/2)(4p+8))=0
We multiply parentheses ..
-(2(+4p^2+1/2*8))+26p=0
We multiply all the terms by the denominator
-(2(+4p^2+1+26p*2*8))=0
We calculate terms in parentheses: -(2(+4p^2+1+26p*2*8)), so:
2(+4p^2+1+26p*2*8)
We multiply parentheses
8p^2+832p+2
Back to the equation:
-(8p^2+832p+2)
We get rid of parentheses
-8p^2-832p-2=0
a = -8; b = -832; c = -2;
Δ = b2-4ac
Δ = -8322-4·(-8)·(-2)
Δ = 692160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{692160}=\sqrt{64*10815}=\sqrt{64}*\sqrt{10815}=8\sqrt{10815}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-832)-8\sqrt{10815}}{2*-8}=\frac{832-8\sqrt{10815}}{-16} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-832)+8\sqrt{10815}}{2*-8}=\frac{832+8\sqrt{10815}}{-16} $

See similar equations:

| 3z+7=55 | | 7x-16=-8x+14 | | 5x-24=8x-9 | | 15a-2a-11a=4 | | -5/3x+5/3=-1/2x-7 | | 6-2(3x+4)=-6x-2 | | 7x-16=-8x | | -0.8p=6 | | 10+x=5(1 | | -4+6=-6+5x | | -3r-41=-11 | | 4(0.5f-0.25)=6+6 | | M=4n=2 | | 3/7b=4 | | 15r-8r=7 | | 15r−8r=7 | | -x3/2=-27 | | p+18/4=9 | | 5/11a=35 | | K+5+4k=5k+20-3k | | 9g-18=7g+18 | | 5^2x-3x=-4 | | 6(1-5m)+1=37 | | -21=t-50 | | 7(g-90)=35 | | 7/8g=4/5 | | .15x=500 | | 3x+5=6x-37 | | -9p=-18-10p | | 7500(2)=(1/2)(200)h | | y/3+23=31 | | 1/10b-15/5=4 |

Equations solver categories