If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(60-1/3y)+(y+6-1/3y)=180
We move all terms to the left:
2(60-1/3y)+(y+6-1/3y)-(180)=0
Domain of the equation: 3y)!=0We add all the numbers together, and all the variables
y!=0/1
y!=0
y∈R
2(-1/3y+60)+(y-1/3y+6)-180=0
We multiply parentheses
-2y+(y-1/3y+6)+120-180=0
We get rid of parentheses
-2y+y-1/3y+6+120-180=0
We multiply all the terms by the denominator
-2y*3y+y*3y+6*3y+120*3y-180*3y-1=0
Wy multiply elements
-6y^2+3y^2+18y+360y-540y-1=0
We add all the numbers together, and all the variables
-3y^2-162y-1=0
a = -3; b = -162; c = -1;
Δ = b2-4ac
Δ = -1622-4·(-3)·(-1)
Δ = 26232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{26232}=\sqrt{4*6558}=\sqrt{4}*\sqrt{6558}=2\sqrt{6558}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-162)-2\sqrt{6558}}{2*-3}=\frac{162-2\sqrt{6558}}{-6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-162)+2\sqrt{6558}}{2*-3}=\frac{162+2\sqrt{6558}}{-6} $
| 86+35=x | | 3(2y+1)=29 | | -16t^2+226t+105=0 | | 2k+9k-3=k-17 | | -7(k-3)=-7k-21 | | 6x+27=8x-1 | | 110w+121w=11 | | m-32/6-4m-33/7=1 | | 22.5+x=-47.37. | | 8x-30=2x- | | Y=1.35x | | 5x-1=8/7x+4 | | 11(6.7+3.3x)=114.95 | | 8x+5=17+4x | | 3(x+4)=20x-7 | | 4k–3=3k+4 | | 6x28=5x26 | | 2m÷4-8=2 | | 3x+4(2x-4)=-5 | | 3x+4(2x-4)=- | | 5m÷-7+8=3 | | a+4a-5=39 | | (7x+11)(2x+1)=(x-3) | | 3c+6=78-5c | | 3x+5(x-4)=-132 | | 111=7k-1 | | 3y^2+28y-130=0 | | -124=4(1-4x) | | -9p=98.1 | | 5(5-7x)=200 | | 5=-c/3 | | 4.5=6.9-0.4x |