If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(3x+8)=2x(x+3)
We move all terms to the left:
2(3x+8)-(2x(x+3))=0
We multiply parentheses
6x-(2x(x+3))+16=0
We calculate terms in parentheses: -(2x(x+3)), so:We get rid of parentheses
2x(x+3)
We multiply parentheses
2x^2+6x
Back to the equation:
-(2x^2+6x)
-2x^2+6x-6x+16=0
We add all the numbers together, and all the variables
-2x^2+16=0
a = -2; b = 0; c = +16;
Δ = b2-4ac
Δ = 02-4·(-2)·16
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*-2}=\frac{0-8\sqrt{2}}{-4} =-\frac{8\sqrt{2}}{-4} =-\frac{2\sqrt{2}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*-2}=\frac{0+8\sqrt{2}}{-4} =\frac{8\sqrt{2}}{-4} =\frac{2\sqrt{2}}{-1} $
| -112+6y=-105 | | 2.5^x=250 | | -3(b+10)=9 | | g/4+14=24 | | 4/h=12/24= | | (4x-8)^2-28=0 | | 3v−–1=13 | | -3b(b+10)=-9 | | −4/x=−6 | | -6q=-7q-17 | | t/3=1.06 | | -3b(b+10)=9 | | (2x+3)=27 | | –3−10d=–9d | | q/3+-10=-8 | | 3-e=2e-9 | | 7x-x+12=-2(x-1) | | -3/5u-5/2=-4/3 | | 4yy=2 | | 8c=7c−9 | | 2x+x=3x+4 | | 20=10+0.02x | | 10(5-3x)=-5(x-2)-x | | -4(x-4)=16-4x | | 55+y+55=180 | | r2+3=17 | | 3(x+4)=-4(x-1) | | .-3(4x+6)=-2(6x+9) | | 6v+6-2(-6v-2)=2(v-4) | | 250=2.5^x | | -22=k-5 | | (x)2-5X-3=0 |