If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 2(3x + 4) + -3x + -7 = 5(2x + -5) + -4(3x + -2) Reorder the terms: 2(4 + 3x) + -3x + -7 = 5(2x + -5) + -4(3x + -2) (4 * 2 + 3x * 2) + -3x + -7 = 5(2x + -5) + -4(3x + -2) (8 + 6x) + -3x + -7 = 5(2x + -5) + -4(3x + -2) Reorder the terms: 8 + -7 + 6x + -3x = 5(2x + -5) + -4(3x + -2) Combine like terms: 8 + -7 = 1 1 + 6x + -3x = 5(2x + -5) + -4(3x + -2) Combine like terms: 6x + -3x = 3x 1 + 3x = 5(2x + -5) + -4(3x + -2) Reorder the terms: 1 + 3x = 5(-5 + 2x) + -4(3x + -2) 1 + 3x = (-5 * 5 + 2x * 5) + -4(3x + -2) 1 + 3x = (-25 + 10x) + -4(3x + -2) Reorder the terms: 1 + 3x = -25 + 10x + -4(-2 + 3x) 1 + 3x = -25 + 10x + (-2 * -4 + 3x * -4) 1 + 3x = -25 + 10x + (8 + -12x) Reorder the terms: 1 + 3x = -25 + 8 + 10x + -12x Combine like terms: -25 + 8 = -17 1 + 3x = -17 + 10x + -12x Combine like terms: 10x + -12x = -2x 1 + 3x = -17 + -2x Solving 1 + 3x = -17 + -2x Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '2x' to each side of the equation. 1 + 3x + 2x = -17 + -2x + 2x Combine like terms: 3x + 2x = 5x 1 + 5x = -17 + -2x + 2x Combine like terms: -2x + 2x = 0 1 + 5x = -17 + 0 1 + 5x = -17 Add '-1' to each side of the equation. 1 + -1 + 5x = -17 + -1 Combine like terms: 1 + -1 = 0 0 + 5x = -17 + -1 5x = -17 + -1 Combine like terms: -17 + -1 = -18 5x = -18 Divide each side by '5'. x = -3.6 Simplifying x = -3.6
| 3(3x+7)=5(2x+3) | | 2(5x-2)=8(3x+2) | | 3(p+4)=5p | | 180+2y= | | 4(0)+3y=11 | | 2x+12=r | | -1+4x=12*17 | | 6x+8=7x-3 | | 2b+6=-3-7h | | 21-12=3(x-9) | | 5(3x+4)-3x-7=5(2x-5)-4(3x-2) | | 3x-4-5x+1=-2x-3 | | 2xyz^2-8xyz-10xy= | | 1(k+1)4=7 | | 6(5k-8)+-20=11(2k+-3k)+3k | | a-9=56 | | fx=2x+6 | | 3x+50i=24+10yi | | 2dx+4m=9d+5x | | -3x-8=56+5x | | 12-8-x-5= | | -(a-b)+2(a-3b)= | | 89*3x(40+60)+7= | | f(x)=x^2+3x+2 | | 21(2-6)+12x=44 | | 51+5y-14=14y-12-2y | | 3.99+3m=11.00 | | 4d+15=6d-11 | | 9(b+11)= | | 7x+9-3x=12-13x-14 | | 4x=2[x+8] | | 13-2x=-5x+1 |