If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(3x+2-8)x+4=2(2x-10)2x+3
We move all terms to the left:
2(3x+2-8)x+4-(2(2x-10)2x+3)=0
We add all the numbers together, and all the variables
2(3x-6)x-(2(2x-10)2x+3)+4=0
We multiply parentheses
6x^2-12x-(2(2x-10)2x+3)+4=0
We calculate terms in parentheses: -(2(2x-10)2x+3), so:We get rid of parentheses
2(2x-10)2x+3
We multiply parentheses
8x^2-40x+3
Back to the equation:
-(8x^2-40x+3)
6x^2-8x^2-12x+40x-3+4=0
We add all the numbers together, and all the variables
-2x^2+28x+1=0
a = -2; b = 28; c = +1;
Δ = b2-4ac
Δ = 282-4·(-2)·1
Δ = 792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{792}=\sqrt{36*22}=\sqrt{36}*\sqrt{22}=6\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-6\sqrt{22}}{2*-2}=\frac{-28-6\sqrt{22}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+6\sqrt{22}}{2*-2}=\frac{-28+6\sqrt{22}}{-4} $
| 7x²=343 | | x-5+60=180 | | 5.5+x=4.5+x | | 2(x-3)9=5+x-1 | | 6(w+1)-10=4(w-1)+2 | | 75(x+20)=2+0.5(x-2 | | .66(6x-12)=24 | | A+3=b-7 | | -5/9x=-5 | | 6(6 | | -24=12d=2(d-3)+22 | | -6=x-6+2x+8-9x-x | | 5(−6x−4)=5(−7x−7) | | 4x-10=2x+52 | | -25=4m+-41 | | 3.9+0.79x=0.79x+3.9 | | 0=2t-2 | | 3.9+1.09x=1.09 | | 41=6x | | 7+-z=19 | | x/6-4=-3 | | P(x)=200x-0.2x^2-7500 | | -5/8x-3/40x+1/5=-40 | | -18=2(5x=1) | | 3(2x-5)=3x+12 | | 4z+4=5z+1 | | 3(2x+1)=4x-2 | | 3.9+0.79x=0.79 | | 4z+4=5z+5 | | 3.9+0.79x=0.79x+0 | | 3.75x5-2=3.5x5+3.25 | | (81-x)=(93-2x) |