If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(3x+2)+2x(x-1)=4(x+2)
We move all terms to the left:
2(3x+2)+2x(x-1)-(4(x+2))=0
We multiply parentheses
2x^2+6x-2x-(4(x+2))+4=0
We calculate terms in parentheses: -(4(x+2)), so:We add all the numbers together, and all the variables
4(x+2)
We multiply parentheses
4x+8
Back to the equation:
-(4x+8)
2x^2+4x-(4x+8)+4=0
We get rid of parentheses
2x^2+4x-4x-8+4=0
We add all the numbers together, and all the variables
2x^2-4=0
a = 2; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·2·(-4)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*2}=\frac{0-4\sqrt{2}}{4} =-\frac{4\sqrt{2}}{4} =-\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*2}=\frac{0+4\sqrt{2}}{4} =\frac{4\sqrt{2}}{4} =\sqrt{2} $
| 20t-1=90 | | x—2+3=12 | | 9x+48=x-48 | | (5x+7)=34 | | 7x=3x+64 | | v-4/3=2/5 | | 4(3a+7)+3(2a+5)*A=5 | | x3=3 | | -128=-48+-40x | | (5x+8)×(-2)=-36 | | 8m-4m-9m=26 | | 6k+36=84 | | 485-x=79 | | 5(2.9+k)=8.3(2) | | 4x+22=7x-14 | | -22=-7+.8x | | 11k=9=42 | | -7.5x+0.55=-5.45 | | 2x-4=4x-24 | | (9x+13)/(18-3x)=1 | | y4+3y3-62y2+96y+160=0 | | 3(-3q–4)+7=-14 | | 5a-10=2a-7 | | (9x-13)/(18-3x)=1 | | (9x-13)/18-3x)=1 | | X+(x+2)+(x+4)=231 | | (2x+1)^2=13 | | X+(x+1)+(x+2)=-51 | | (2x-1)^2-49=0 | | 2y+5=5y+ | | -17k+23k-(-8k)+-16=12 | | 5d-14+3=2d=2 |