If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(3k+1)k=18
We move all terms to the left:
2(3k+1)k-(18)=0
We multiply parentheses
6k^2+2k-18=0
a = 6; b = 2; c = -18;
Δ = b2-4ac
Δ = 22-4·6·(-18)
Δ = 436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{436}=\sqrt{4*109}=\sqrt{4}*\sqrt{109}=2\sqrt{109}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{109}}{2*6}=\frac{-2-2\sqrt{109}}{12} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{109}}{2*6}=\frac{-2+2\sqrt{109}}{12} $
| 16^2-16x+1=0 | | 3x-1x+2=4 | | (x-3)^2-10=111 | | x+17+3x=5x+17 | | 2(x-3)+6=4x-2(1+x) | | 5(3n+4)=6(9n+8)+4 | | 5(5v+7)=-15 | | x-((3-5x)/(2))=9x-18 | | 4x+–7x=–3x+5 | | 26^2+b^2=34^2 | | 2d^2-5d=-2 | | 7-14n=7(1-2n) | | x(24-x)=44 | | 4X^3+3x^2-13=0 | | 7-14n=7 | | 3•x/3=5• | | 17x+17=4(3x+5)+5x-3 | | 25^(x+3)=25 | | X-4=16+8x | | -4(5x-9)+9=-20x+45 | | 2x=12-6 | | (3x+10)°=(8x-5)° | | 23x=5x+2 | | X-4=16+x8 | | 5x+3=x8-7 | | 2x-3=-9+x | | 5–2(x–3)=4x–71 | | 5–2(x–3)=4x–7 | | F(n)=5n^2+3n+2 | | -4/9x-7/45x+1/5x=-90 | | (a-5)*(2a-7)=0 | | (4+n)-10=42 |