2(3/5x+3)-(2/3x-1)=

Simple and best practice solution for 2(3/5x+3)-(2/3x-1)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(3/5x+3)-(2/3x-1)= equation:



2(3/5x+3)-(2/3x-1)=
We move all terms to the left:
2(3/5x+3)-(2/3x-1)-()=0
Domain of the equation: 5x+3)!=0
x∈R
Domain of the equation: 3x-1)!=0
x∈R
We add all the numbers together, and all the variables
2(3/5x+3)-(2/3x-1)=0
We multiply parentheses
6x-(2/3x-1)+6=0
We get rid of parentheses
6x-2/3x+1+6=0
We multiply all the terms by the denominator
6x*3x+1*3x+6*3x-2=0
Wy multiply elements
18x^2+3x+18x-2=0
We add all the numbers together, and all the variables
18x^2+21x-2=0
a = 18; b = 21; c = -2;
Δ = b2-4ac
Δ = 212-4·18·(-2)
Δ = 585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{585}=\sqrt{9*65}=\sqrt{9}*\sqrt{65}=3\sqrt{65}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-3\sqrt{65}}{2*18}=\frac{-21-3\sqrt{65}}{36} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+3\sqrt{65}}{2*18}=\frac{-21+3\sqrt{65}}{36} $

See similar equations:

| 3x(2x–1)=0 | | 3.2=2t | | x2-4=4x+8 | | 3n+12(2/5)=49 | | t=-16t^2+140t+30 | | 2z-3(z+)=-8 | | 7z^+8z+3=3z^ | | 3x-9)=3 | | c-3(4=2)=17 | | 1/2x(6+x)=x+4 | | x+x+90+90=180 | | r=18=27 | | 1/3a-6=1 | | 7+(b-2)=10 | | 1/2x6+x=x+4 | | -3+x=-3-8x | | 21/3a-6=1 | | X+60+x+54=180 | | 13y^+10y-3=5y2 | | X+60=x+54 | | 1/2x+1.6-3/8x=6 | | (a+3)-5=13 | | X+54=x+60 | | X+54+x+60=82 | | –25=13n−10 | | x2−41=0 | | 5x+3+4x+8=164 | | 8.1=i+5.1 | | 7d+3d–2d+2-6d=0 | | 2x+57=8x-3 | | 4x=144-12 | | h-10=10 |

Equations solver categories