2(3/2x+-3)=-24(2/8x+-6)

Simple and best practice solution for 2(3/2x+-3)=-24(2/8x+-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(3/2x+-3)=-24(2/8x+-6) equation:



2(3/2x+-3)=-24(2/8x+-6)
We move all terms to the left:
2(3/2x+-3)-(-24(2/8x+-6))=0
Domain of the equation: 2x+-3)!=0
x∈R
Domain of the equation: 8x+-6))!=0
x∈R
We add all the numbers together, and all the variables
2(3/2x-3)-(-24(2/8x-6))=0
We multiply parentheses
6x-(-24(2/8x-6))-6=0
We multiply all the terms by the denominator
6x*8x-6*8x-6))-(-24(2-6))=0
We add all the numbers together, and all the variables
6x*8x-6*8x-6))-(-24(-4))=0
We add all the numbers together, and all the variables
6x*8x-6*8x=0
Wy multiply elements
48x^2-48x=0
a = 48; b = -48; c = 0;
Δ = b2-4ac
Δ = -482-4·48·0
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2304}=48$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-48}{2*48}=\frac{0}{96} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+48}{2*48}=\frac{96}{96} =1 $

See similar equations:

| 65+x=115 | | 60/i-10=20 | | 12n-7n=5 | | (11x+2)+(7x-10)=133 | | 52/x=9.5/3.5 | | 7n-5=-4n-27 | | 4(1-x)+3=2x-2 | | 75+x=120 | | 4x+11=4x-9 | | -2-6k+4=-22 | | 4(x=3)24-2x= | | 3x^2+4x-57=0 | | x=200(1.03)^11/2 | | x-103=183+12x | | b-29=71 | | (y/4)+6=5 | | 15/8=x/30 | | x+2x-1-1/2x+4=180 | | –2−6h=–9−6h | | 6/3x-2=2/9 | | -2x+5x=2x-4 | | 5p+6p=-22 | | 5.6g-2=4.3g+4 | | 7x+1+47+62=90 | | x^{2}-5=11 | | 0.3b-0.7=0.1b+0.3b | | -3x-22=71 | | 85=4x-7 | | 29=5/9(f-32) | | 29=5/9(f-32) | | 5-1(3x-7)=0 | | d+23=13 |

Equations solver categories