If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(2x-1)=2(x+1)(3/2)
We move all terms to the left:
2(2x-1)-(2(x+1)(3/2))=0
We add all the numbers together, and all the variables
2(2x-1)-(2(x+1)(+3/2))=0
We multiply parentheses
4x-(2(x+1)(+3/2))-2=0
We multiply parentheses ..
-(2(+3x^2+1*3/2))+4x-2=0
We multiply all the terms by the denominator
-(2(+3x^2+1*3+4x*2))-2*2))=0
We calculate terms in parentheses: -(2(+3x^2+1*3+4x*2)), so:We add all the numbers together, and all the variables
2(+3x^2+1*3+4x*2)
We multiply parentheses
6x^2+16x+6
Back to the equation:
-(6x^2+16x+6)
-(6x^2+16x+6)=0
We get rid of parentheses
-6x^2-16x-6=0
a = -6; b = -16; c = -6;
Δ = b2-4ac
Δ = -162-4·(-6)·(-6)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{7}}{2*-6}=\frac{16-4\sqrt{7}}{-12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{7}}{2*-6}=\frac{16+4\sqrt{7}}{-12} $
| 5m+4-3=9-3 | | 2(5^3x+1)=50 | | 5(5x+84)=4(x+42) | | 2(x-1)-10=-16 | | 1-+3*(x-2)=36-(3+6) | | 0.357/1.009=3.4/x | | 1+3x(x-2)=36-(X+6) | | -8x-2=12 | | 6-6x=4-8x | | 2*(x+2)-45=x-30 | | 70+(3x-3)=90 | | 2x-1=x, | | 8=18-x | | 6x+18-x=0 | | 5(1+6n)=5n-5 | | -1(4q+8)+6q=12-5/6(18q+6) | | 11.50=3(x+4.75) | | w+2w=6-w | | 11.50=3(x+4.75 | | 1/4(8x+20=11 | | 3n-1/5=1 | | 12/4x=-8 | | 3*x+45=63+x | | 3x-14=x-4 | | 2x-5=13-3x | | 9t+3=5(-6) | | 2x-20=1.5x | | s-7-s=8 | | (19-4)*x=6-x | | 50–7p=15 | | 12x+9=6x-10 | | 2x+11=-9x-19 |