2(2x+3)=-6x(x+9)

Simple and best practice solution for 2(2x+3)=-6x(x+9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(2x+3)=-6x(x+9) equation:



2(2x+3)=-6x(x+9)
We move all terms to the left:
2(2x+3)-(-6x(x+9))=0
We multiply parentheses
4x-(-6x(x+9))+6=0
We calculate terms in parentheses: -(-6x(x+9)), so:
-6x(x+9)
We multiply parentheses
-6x^2-54x
Back to the equation:
-(-6x^2-54x)
We get rid of parentheses
6x^2+54x+4x+6=0
We add all the numbers together, and all the variables
6x^2+58x+6=0
a = 6; b = 58; c = +6;
Δ = b2-4ac
Δ = 582-4·6·6
Δ = 3220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3220}=\sqrt{4*805}=\sqrt{4}*\sqrt{805}=2\sqrt{805}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(58)-2\sqrt{805}}{2*6}=\frac{-58-2\sqrt{805}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(58)+2\sqrt{805}}{2*6}=\frac{-58+2\sqrt{805}}{12} $

See similar equations:

| 1.2x=169 | | 2(f+5)=20 | | x(12)=12 | | -4x+18=18 | | 11(x+5)=170 | | 3(2y+3)=6y−9 | | √x+6+9=18 | | /g=22 | | 16d-8d+2d-3d-5d=6 | | x+55=170 | | -(-2x+1=9-14x | | 13n-9n+n=15 | | k+93=7 | | -5m=75- | | 5x+11=170 | | 12t+2t+2t-8t=8 | | -14y-20=-20 | | 102=-6(7+3x) | | x+(x*0.2)=159 | | 4x-10(-2)=0 | | 6a-18=6 | | 3x+8=5‒10 | | 3.5m+7m-2m=68 | | 11/2h=13/8 | | −8x−24=0 | | 3x+8=5x‒10 | | 2x‐4=4x+8 | | 15w-9+3w+4=49 | | -38=-3b+1 | | 5x-8x+7=22;x=-5 | | 4^(5-3x)=1/125 | | 14t–8=18t |

Equations solver categories