2(1/4x-7)=1/3x+4

Simple and best practice solution for 2(1/4x-7)=1/3x+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(1/4x-7)=1/3x+4 equation:



2(1/4x-7)=1/3x+4
We move all terms to the left:
2(1/4x-7)-(1/3x+4)=0
Domain of the equation: 4x-7)!=0
x∈R
Domain of the equation: 3x+4)!=0
x∈R
We multiply parentheses
2x-(1/3x+4)-14=0
We get rid of parentheses
2x-1/3x-4-14=0
We multiply all the terms by the denominator
2x*3x-4*3x-14*3x-1=0
Wy multiply elements
6x^2-12x-42x-1=0
We add all the numbers together, and all the variables
6x^2-54x-1=0
a = 6; b = -54; c = -1;
Δ = b2-4ac
Δ = -542-4·6·(-1)
Δ = 2940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2940}=\sqrt{196*15}=\sqrt{196}*\sqrt{15}=14\sqrt{15}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-14\sqrt{15}}{2*6}=\frac{54-14\sqrt{15}}{12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+14\sqrt{15}}{2*6}=\frac{54+14\sqrt{15}}{12} $

See similar equations:

| 3x+13=7x+94 | | x=x^2+10-6 | | 3x=(11*3) | | -7x-36=-3x | | 5(2^t)=4 | | 6y=+30 | | +50=5h | | (38-2x)(22-2x)=420 | | 900x+40=3600x-50 | | (2x+20)(2x+10)=96 | | y=500(1.08)^30 | | 18-1.2y=2 | | 4+x+(1/2)x=19 | | 180=57+x+50+x+87 | | 2x+80=-50 | | 2x+80=50 | | 180=23-4x+19 | | 23-4x+19=180 | | 2^x=1.286 | | 12=r^2 | | F(x)=0.69(1.03) | | 13x+41/11=12 | | 3x-10=-84 | | -y/3+13=33 | | 3(4)-x=12 | | (3x(4))-x=12 | | (3x4)-x=12 | | -b/5-50=-49 | | 3+w/7.68=9 | | 0.35*x+20=400 | | 10c=3.71 | | 4y+3=5y-21 |

Equations solver categories