If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2(1-2x)=(1-x)(1+x)
We move all terms to the left:
2(1-2x)-((1-x)(1+x))=0
We add all the numbers together, and all the variables
2(-2x+1)-((-1x+1)(x+1))=0
We multiply parentheses
-4x-((-1x+1)(x+1))+2=0
We multiply parentheses ..
-((-1x^2-1x+x+1))-4x+2=0
We calculate terms in parentheses: -((-1x^2-1x+x+1)), so:We get rid of parentheses
(-1x^2-1x+x+1)
We get rid of parentheses
-1x^2-1x+x+1
We add all the numbers together, and all the variables
-1x^2+1
Back to the equation:
-(-1x^2+1)
1x^2-4x-1+2=0
We add all the numbers together, and all the variables
x^2-4x+1=0
a = 1; b = -4; c = +1;
Δ = b2-4ac
Δ = -42-4·1·1
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{3}}{2*1}=\frac{4-2\sqrt{3}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{3}}{2*1}=\frac{4+2\sqrt{3}}{2} $
| 65=5h | | 18=5+X=26-x=x9=26/X=6x=18 | | x/1/5=1/10/1/4 | | x/5+5/5=6 | | 18=5+4=26-4=4x9=26/4=6x4=18 | | -5(1-5x)+5(-8x-8x-2)=4x-8x | | 18=5+13=26-13=13x9=26/13=6x13=18 | | 9x-1=2x+13 | | 2x=4=10+5x | | 2x^2+5(x-1)=x(x+1) | | 8x-2x=-2 | | 7n+14=9n-6 | | -4(u-2)=-7u+2 | | 9x+25-7x+25=-6 | | 4x^2-5x+1100=0 | | -6x+2x=4x-8 | | 3/8=6x | | 1-1x=21+4x | | 26,2+20+3x=180 | | 4x-9x^2-1=0 | | 18=5+X=26-x=x9=26/X=6x4=18 | | 2x-3=1.5 | | 6x+9x-66=44-7x | | -1(5x+3)=2 | | –6x+9=–4x–3 | | 8(w-2)=4w-12 | | 1/3(9+d)=-12 | | -2x+3/10-4x-1/2=9/10 | | 7x=1-22 | | (18x+1)=(11x+5) | | -2x-9x=-1 | | 7x+6x-51=68-4x |