2(0.5z+7)=z(z-5)

Simple and best practice solution for 2(0.5z+7)=z(z-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(0.5z+7)=z(z-5) equation:



2(0.5z+7)=z(z-5)
We move all terms to the left:
2(0.5z+7)-(z(z-5))=0
We multiply parentheses
0z-(z(z-5))+14=0
We calculate terms in parentheses: -(z(z-5)), so:
z(z-5)
We multiply parentheses
z^2-5z
Back to the equation:
-(z^2-5z)
We add all the numbers together, and all the variables
z-(z^2-5z)+14=0
We get rid of parentheses
-z^2+z+5z+14=0
We add all the numbers together, and all the variables
-1z^2+6z+14=0
a = -1; b = 6; c = +14;
Δ = b2-4ac
Δ = 62-4·(-1)·14
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{23}}{2*-1}=\frac{-6-2\sqrt{23}}{-2} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{23}}{2*-1}=\frac{-6+2\sqrt{23}}{-2} $

See similar equations:

| −4+3x=2x+3(x+1) | | 12h+2=8+h | | 4x-9(-2)-2=0 | | 2323(6-3x)=(1-x)+(3-x) | | 9x/7-x=2 | | 6(x+2)=14 | | 7.8-0.9b+2.7-1.2b=14-2.1b-7.8 | | 13x9=1916+x | | -(-2x+1)=9-14x | | 18x-5(-2)=10 | | V=(36-2x)(28-2x) | | 15^2=2x^2+7x | | 18x-5(-4)=10 | | -2(3t-5)+3t=4t-5 | | 5x+20x+20x=180 | | 17/6=n/13 | | n/16=576/24 | | 4v^2-13v-1=0 | | 25b^2-4=15 | | 135=(n-2)180/n | | n+11/4+n+2/9=13/18 | | 7.2x+12=4.1x+7+3.1x | | 3-x=7+24 | | (x*4)+x=20 | | (5/3x-4)=(2/x+4) | | 5x16=3x-8 | | 4w+2=-4/5 | | 8-4a=8(7+a) | | 3x-5÷12+x=3x+5÷3+1 | | 4xx2−25=20x2−25−3x+5 | | 16x-8=12x-12 | | 20=-4t-4 |

Equations solver categories