2(-3x-1)=-2(x-2)(x+7)

Simple and best practice solution for 2(-3x-1)=-2(x-2)(x+7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(-3x-1)=-2(x-2)(x+7) equation:



2(-3x-1)=-2(x-2)(x+7)
We move all terms to the left:
2(-3x-1)-(-2(x-2)(x+7))=0
We multiply parentheses
-6x-(-2(x-2)(x+7))-2=0
We multiply parentheses ..
-(-2(+x^2+7x-2x-14))-6x-2=0
We calculate terms in parentheses: -(-2(+x^2+7x-2x-14)), so:
-2(+x^2+7x-2x-14)
We multiply parentheses
-2x^2-14x+4x+28
We add all the numbers together, and all the variables
-2x^2-10x+28
Back to the equation:
-(-2x^2-10x+28)
We get rid of parentheses
2x^2+10x-6x-28-2=0
We add all the numbers together, and all the variables
2x^2+4x-30=0
a = 2; b = 4; c = -30;
Δ = b2-4ac
Δ = 42-4·2·(-30)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-16}{2*2}=\frac{-20}{4} =-5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+16}{2*2}=\frac{12}{4} =3 $

See similar equations:

| -(4+5x)=3-5x | | 7/4=b+3/2 | | 4(5+z)-6(2+z)=4 | | x*3+8=32 | | -2x-6=10-2x | | 9-8y+3+2y=10-11-12y | | 0=(x-3)(x-7)(x+5)(x+1) | | -2(-3y4)=-8 | | 2·0.2^15x−1=10·25^2−0.5x | | 4(2n+7)=-4 | | 4.3x-18.99=8.1 | | 3(3m+2)=42 | | -(m-14)=3 | | 8x(4+2)=-2x+100 | | 8w+8(w+4)=-32 | | 14c-25+15c+176=916 | | -38=2y+2(y-7) | | 2z+22=162 | | 12c-15+18c+459=1110 | | 3z+22-z=1632 | | 2(x+3)-5x=-6 | | 11c-10+15c+176=1321 | | 13c-20+18c+459=735 | | -(m-7)=12 | | 6/5a+9/5=1/5 | | -3=-3(y-4) | | 3/5a+6/5=2/5 | | Y+6=5(x+4) | | 2x+1=7x-16 | | n/2-n/3-2/3=5/6 | | -m+19=-2 | | 1/2a+9=-1 |

Equations solver categories