1z+1=1/2z+4

Simple and best practice solution for 1z+1=1/2z+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1z+1=1/2z+4 equation:



1z+1=1/2z+4
We move all terms to the left:
1z+1-(1/2z+4)=0
Domain of the equation: 2z+4)!=0
z∈R
We add all the numbers together, and all the variables
z-(1/2z+4)+1=0
We get rid of parentheses
z-1/2z-4+1=0
We multiply all the terms by the denominator
z*2z-4*2z+1*2z-1=0
Wy multiply elements
2z^2-8z+2z-1=0
We add all the numbers together, and all the variables
2z^2-6z-1=0
a = 2; b = -6; c = -1;
Δ = b2-4ac
Δ = -62-4·2·(-1)
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{11}}{2*2}=\frac{6-2\sqrt{11}}{4} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{11}}{2*2}=\frac{6+2\sqrt{11}}{4} $

See similar equations:

| -18m–-12m+-5m=11 | | y=0.1(0+20)+7 | | n/4=n/5-1 | | 20p/3=40^p= | | 3x-3x=-60 | | 5y+11=y+59 | | 20p/3=40p= | | 13v-5v+2v-7v=9 | | 10000000+x-10000000÷2x=10000000 | | 4r+2r-5r+r+4r=12 | | 9-x+3x=-36 | | p+4=15p | | 2m=7m= | | 50w-280=970 | | 12m-8m-3m=14 | | 50w+280=970 | | 13h-7h-h-4h=16 | | 50w-970=280 | | 2w+-10w-–12w=-8 | | -2x^2-3x-35=0 | | (x-5)^(2)+(-3x-6+4)^(2)=73 | | 1+8p=25+11p | | -4(8-x)+3x=-21= | | m3=24 | | 17.75x+24=18.95=18 | | 4x–2–x=x–3+11 | | x=132.853-0.0769*77.1-0.3877*45+6.315-3.2649*15-0.1565*140 | | 5x^2-24x+96=0 | | 18=x-(-10) | | 3d+3d-3d-2d+d=8 | | 260+8x=650+5x | | 7v+2v-3v-v+v=18 |

Equations solver categories