If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1y(2y+9)=0
We multiply parentheses
2y^2+9y=0
a = 2; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·2·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*2}=\frac{-18}{4} =-4+1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*2}=\frac{0}{4} =0 $
| -x-1=-5x-29 | | 2.9(13.1r-7.2)=7.8 | | 7(x+5)=85 | | 2w+5+48=4w | | 0.35 /2/3x=0.45/ x−10 | | 50=x+(x-14) | | 6x+25=175 | | 12x+45=180 | | 12x-18=8x-22 | | 3u+9-2(-8u-3)=3(u-1) | | 12x+90=180 | | 29.5^2+46.5^2=c^2 | | -c+12-20=-12-2c | | 20-18j=-19-15j | | -17.84-14.3z=0.1z+16.72 | | 21.9-(x*x)=0 | | -20-16h+4h=20-8h | | 5x+7=4x=9 | | -19+10s=11s | | -19.6p+2.24=-19.8p | | 40/3x=17 | | 5x2+2=13 | | X^3+3x^2+2x=720 | | 5^(2x+1)=132 | | 10b+20=-20+6b-20 | | 5^2x+1=132 | | 2f-20=-3f+20 | | -4-14n=-13n | | 1.5=10/x-1.5-10/x | | 8x-1/3+2x+1/6+x-7/2=8+x | | -13m-7.35=10.97-14.3m | | -13m-7.35=10.97-14.3 |