1x+1/4x=200,000

Simple and best practice solution for 1x+1/4x=200,000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1x+1/4x=200,000 equation:



1x+1/4x=200.000
We move all terms to the left:
1x+1/4x-(200.000)=0
Domain of the equation: 4x!=0
x!=0/4
x!=0
x∈R
We add all the numbers together, and all the variables
1x+1/4x-200=0
We add all the numbers together, and all the variables
x+1/4x-200=0
We multiply all the terms by the denominator
x*4x-200*4x+1=0
Wy multiply elements
4x^2-800x+1=0
a = 4; b = -800; c = +1;
Δ = b2-4ac
Δ = -8002-4·4·1
Δ = 639984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{639984}=\sqrt{16*39999}=\sqrt{16}*\sqrt{39999}=4\sqrt{39999}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-800)-4\sqrt{39999}}{2*4}=\frac{800-4\sqrt{39999}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-800)+4\sqrt{39999}}{2*4}=\frac{800+4\sqrt{39999}}{8} $

See similar equations:

| y+4/5=63/4 | | 3(a+5+2a)=18 | | 6x+8=2x-31 | | P(x)=95,000(30)+200,000 | | -9+z=2 | | 3x8(2x-1)=2+14x | | 1153.85=40x+((10x)(1.5)) | | 3x=8(2x-1)=2+14x | | -7h=7 | | 12b=-60 | | 1153.85=40x+(10x*1.5) | | 9/y=13/7 | | 6(v+1)=2v-14 | | i=175.74(.12)(3) | | -3c+4=5-7 | | (3x-1)+(2x+1)=180 | | 15=2w-2*5 | | 3y+2=35+y | | 15=2w-2.5 | | 7m^2+5m=0 | | Y=0.28x+19.44 | | i=12000(0.0425)(5) | | 1/2x=3/2+3 | | 16*x-0.5*0.43*x^2=55000,16*x-0.43*x0 | | 5−7x=2(1−4x) | | 11+h/8=8 | | 2x-10+7x-10=180 | | 3x-1.5=-5.25 | | 0.08=0.2x-4 | | X`2+4=6x-5 | | -4(2x+5)=2(-4x+10) | | 10=5t-4.9t^2 |

Equations solver categories