1x(3+7x)=191

Simple and best practice solution for 1x(3+7x)=191 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1x(3+7x)=191 equation:


Simplifying
1x(3 + 7x) = 191
(3 * 1x + 7x * 1x) = 191
(3x + 7x2) = 191

Solving
3x + 7x2 = 191

Solving for variable 'x'.

Reorder the terms:
-191 + 3x + 7x2 = 191 + -191

Combine like terms: 191 + -191 = 0
-191 + 3x + 7x2 = 0

Begin completing the square.  Divide all terms by
7 the coefficient of the squared term: 

Divide each side by '7'.
-27.28571429 + 0.4285714286x + x2 = 0

Move the constant term to the right:

Add '27.28571429' to each side of the equation.
-27.28571429 + 0.4285714286x + 27.28571429 + x2 = 0 + 27.28571429

Reorder the terms:
-27.28571429 + 27.28571429 + 0.4285714286x + x2 = 0 + 27.28571429

Combine like terms: -27.28571429 + 27.28571429 = 0.00000000
0.00000000 + 0.4285714286x + x2 = 0 + 27.28571429
0.4285714286x + x2 = 0 + 27.28571429

Combine like terms: 0 + 27.28571429 = 27.28571429
0.4285714286x + x2 = 27.28571429

The x term is 0.4285714286x.  Take half its coefficient (0.2142857143).
Square it (0.04591836735) and add it to both sides.

Add '0.04591836735' to each side of the equation.
0.4285714286x + 0.04591836735 + x2 = 27.28571429 + 0.04591836735

Reorder the terms:
0.04591836735 + 0.4285714286x + x2 = 27.28571429 + 0.04591836735

Combine like terms: 27.28571429 + 0.04591836735 = 27.33163265735
0.04591836735 + 0.4285714286x + x2 = 27.33163265735

Factor a perfect square on the left side:
(x + 0.2142857143)(x + 0.2142857143) = 27.33163265735

Calculate the square root of the right side: 5.227966398

Break this problem into two subproblems by setting 
(x + 0.2142857143) equal to 5.227966398 and -5.227966398.

Subproblem 1

x + 0.2142857143 = 5.227966398 Simplifying x + 0.2142857143 = 5.227966398 Reorder the terms: 0.2142857143 + x = 5.227966398 Solving 0.2142857143 + x = 5.227966398 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.2142857143' to each side of the equation. 0.2142857143 + -0.2142857143 + x = 5.227966398 + -0.2142857143 Combine like terms: 0.2142857143 + -0.2142857143 = 0.0000000000 0.0000000000 + x = 5.227966398 + -0.2142857143 x = 5.227966398 + -0.2142857143 Combine like terms: 5.227966398 + -0.2142857143 = 5.0136806837 x = 5.0136806837 Simplifying x = 5.0136806837

Subproblem 2

x + 0.2142857143 = -5.227966398 Simplifying x + 0.2142857143 = -5.227966398 Reorder the terms: 0.2142857143 + x = -5.227966398 Solving 0.2142857143 + x = -5.227966398 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.2142857143' to each side of the equation. 0.2142857143 + -0.2142857143 + x = -5.227966398 + -0.2142857143 Combine like terms: 0.2142857143 + -0.2142857143 = 0.0000000000 0.0000000000 + x = -5.227966398 + -0.2142857143 x = -5.227966398 + -0.2142857143 Combine like terms: -5.227966398 + -0.2142857143 = -5.4422521123 x = -5.4422521123 Simplifying x = -5.4422521123

Solution

The solution to the problem is based on the solutions from the subproblems. x = {5.0136806837, -5.4422521123}

See similar equations:

| y=4x^2+12x+40 | | x^2-18x+155=0 | | 1.5x+9=5x-6 | | 56=-4x+5+7x | | -6/5x=24 | | sinx=1+(sin^2)x | | sinx=1+sin^2x | | -8=x+4x | | N+43=43 | | f(x)=5x^2+17 | | 5y-3*2=8*y | | .271429=2r*r^2 | | 1/5:10=2:x | | 30x^2+25x=0 | | 15=5b+12-2b+6 | | x^2=y-25 | | (x-4)(-1-x)-6=0 | | G=5/2(p-30) | | 4(3x+5y+2z)3(x-z)= | | 3y+19=-4(y+4) | | (y-25)*2=2 | | 5+6+7+n=20 | | 7+n=15 | | 15=6x+15-10x | | (y*2-50)*(y*2-50)=2 | | 7e+21=-21 | | M=3000(1+0.09*.417) | | -7e=21 | | 63/9=7 | | 2x^2+5b-3=0 | | 63/=9 | | 2-3x=-8x+9 |

Equations solver categories