1n(-2n-9)=(-n-2)

Simple and best practice solution for 1n(-2n-9)=(-n-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1n(-2n-9)=(-n-2) equation:



1n(-2n-9)=(-n-2)
We move all terms to the left:
1n(-2n-9)-((-n-2))=0
We add all the numbers together, and all the variables
1n(-2n-9)-((-1n-2))=0
We multiply parentheses
-2n^2-9n-((-1n-2))=0
We calculate terms in parentheses: -((-1n-2)), so:
(-1n-2)
We get rid of parentheses
-1n-2
Back to the equation:
-(-1n-2)
We get rid of parentheses
-2n^2-9n+1n+2=0
We add all the numbers together, and all the variables
-2n^2-8n+2=0
a = -2; b = -8; c = +2;
Δ = b2-4ac
Δ = -82-4·(-2)·2
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{5}}{2*-2}=\frac{8-4\sqrt{5}}{-4} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{5}}{2*-2}=\frac{8+4\sqrt{5}}{-4} $

See similar equations:

| 2x+23=4x+5 | | 133=7(5+6n) | | 5(n+2)-6=54 | | p+12/p=6 | | -2(7+8x)=-110 | | 6(x-3)=3(x-4) | | -3(2n+4)=-48 | | 7(2-z)+5(z+3)/1-4z=3/5 | | 2^(2x+3)-25(2^x)+3=0 | | 5m÷8-6÷8+3m=2 | | 2^2x+3-25(2^x)+3=0 | | 5m÷8=2÷8 | | 25(2^x)=3 | | -6n+2(-5+4n)=-4(n+1 | | 7/4x+2/5=-2/8x | | 4-x^2=x^2-4 | | 5/y=5 | | 2x+26=12x | | g-1=15-5 | | 2/3n-7=7 | | (x+6)/2(0.75)=9.5 | | 2^4x+1=8^x-5 | | -8+r=-1+12 | | 8x+3=6x | | 7+3^2x+3=11 | | 15x=390 | | 2(f-6)=12 | | 3a-a+4=16 | | 11g+9g=20 | | X+2/4=x/6 | | 9.2(x+6.4)=132.4 | | 5x+3=4÷3(1+x) |

Equations solver categories