1b+1b+45+3/2b+2b-90+90=540

Simple and best practice solution for 1b+1b+45+3/2b+2b-90+90=540 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1b+1b+45+3/2b+2b-90+90=540 equation:



1b+1b+45+3/2b+2b-90+90=540
We move all terms to the left:
1b+1b+45+3/2b+2b-90+90-(540)=0
Domain of the equation: 2b!=0
b!=0/2
b!=0
b∈R
We add all the numbers together, and all the variables
4b+3/2b-495=0
We multiply all the terms by the denominator
4b*2b-495*2b+3=0
Wy multiply elements
8b^2-990b+3=0
a = 8; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·8·3
Δ = 980004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{980004}=\sqrt{4*245001}=\sqrt{4}*\sqrt{245001}=2\sqrt{245001}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-2\sqrt{245001}}{2*8}=\frac{990-2\sqrt{245001}}{16} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+2\sqrt{245001}}{2*8}=\frac{990+2\sqrt{245001}}{16} $

See similar equations:

| 9x+1=7x-8 | | 1=108u | | 2k+1k+45=180 | | 12j+12=-96 | | 1x+1x+10+100+120+120+120=720 | | 8-3=5=4y | | n2+12n=429 | | 2a+2a+1a+1a=360 | | 5x-15=3x=7 | | 6(x+7)20=6x+8 | | -x=-7,2 | | t=1+4 | | -5n+8-3=10 | | 5x^2+8=10 | | 3(2x-1)=5x=9-2x | | 7,3x=0 | | 9-105w=-12 | | 4x+12=2× | | 4a-9=27 | | x-3=8x+14x-6 | | -14=-6y+4(y-5) | | 60=8t+12 | | 8=6(v+3)-8v | | x+114=109 | | 8=6(v-3)-8v | | 6=(-1+3h)2 | | -4w+2=-6 | | 2(w-4)-4w=6 | | -12=2-m | | (x-35)+x(x-46)1/2x=360 | | 64=5k+5 | | x+104=94 |

Equations solver categories