If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1=5x^2=3x+11
We move all terms to the left:
1-(5x^2)=0
a = -5; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-5)·1
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*-5}=\frac{0-2\sqrt{5}}{-10} =-\frac{2\sqrt{5}}{-10} =-\frac{\sqrt{5}}{-5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*-5}=\frac{0+2\sqrt{5}}{-10} =\frac{2\sqrt{5}}{-10} =\frac{\sqrt{5}}{-5} $
| X°(2+y=16 | | 6-3y=13 | | X°2+y=16 | | 16x=2x-42 | | 0=126-2x | | 10x(8x)=160 | | 3x-18=5x+17 | | 9x-6+61+58=180 | | 6-m=-18 | | 2y+4(3y-8)=108 | | -p=-3p−4 | | 6x-48=4x10 | | 2+3x=1+7 | | 14x+166x-20=20(9x+20) | | -1-7(6-3k)=-16-6k | | 6(2+y)=3(3-y)= | | |-9+9m|=27 | | -7+6f=3+5f | | 3y=11y+7 | | 14x+-44=180 | | -9u+7=-10u | | -6+4m=3m | | 8x+3=x | | 10+6r=3+7r | | -6-3y=13 | | -2s=-s+6 | | 1/3a-13/50=5/6a-3/2 | | 9f+8=8f | | √x+4=√x−3 | | 6x+6+9x+9=180 | | ⅓(9c-36)=9 | | -14x+7x-18=9x+25 |