1=2560/d2

Simple and best practice solution for 1=2560/d2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1=2560/d2 equation:



1=2560/d2
We move all terms to the left:
1-(2560/d2)=0
Domain of the equation: d2)!=0
d!=0/1
d!=0
d∈R
We add all the numbers together, and all the variables
-(+2560/d2)+1=0
We get rid of parentheses
-2560/d2+1=0
We multiply all the terms by the denominator
1*d2-2560=0
We add all the numbers together, and all the variables
d^2-2560=0
a = 1; b = 0; c = -2560;
Δ = b2-4ac
Δ = 02-4·1·(-2560)
Δ = 10240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{10240}=\sqrt{1024*10}=\sqrt{1024}*\sqrt{10}=32\sqrt{10}$
$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{10}}{2*1}=\frac{0-32\sqrt{10}}{2} =-\frac{32\sqrt{10}}{2} =-16\sqrt{10} $
$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{10}}{2*1}=\frac{0+32\sqrt{10}}{2} =\frac{32\sqrt{10}}{2} =16\sqrt{10} $

See similar equations:

| q/19+9=10 | | 7x-3x=6+7x | | x-0.25+7-5x=3x+8 | | 2z+54=5z-75 | | 6t=15t-3/3 | | x−5−5x=7x+8−10x | | 24=5t-11t | | 4y+12+y=2y+3 | | u+12/5=13 | | d=-12+0.42/1.4 | | 5t+19=19 | | F=P(1+J/n | | -0.7x-3.4=-6.15 | | -6n-2n-4=12 | | 2v+6=13v=4v+62 | | 6a+5a+3=-8 | | 13.2d=14.6d+17.22 | | 1/2(3x+8)=18 | | 19-16z=-10z-17-10z | | 19=0.4x-0.6x-5 | | -24+9x=32+x | | 9+17u=16u | | 10(3+x)=20 | | 8x+1=-10x+37 | | (1-300/(300+(0.75*x)))*1.25*1.5=0.2 | | x^2-8x=-112 | | 300/(300+(0.75*x))*1.25*1.5=0.2 | | 3y-20=19-10y | | 8x+20=x | | -9=8n-6-8n | | 9-3x=-5x-1 | | 3(4h-4)=-2(12-6h) |

Equations solver categories