1=(x+3)(7x+5)

Simple and best practice solution for 1=(x+3)(7x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1=(x+3)(7x+5) equation:



1=(x+3)(7x+5)
We move all terms to the left:
1-((x+3)(7x+5))=0
We multiply parentheses ..
-((+7x^2+5x+21x+15))+1=0
We calculate terms in parentheses: -((+7x^2+5x+21x+15)), so:
(+7x^2+5x+21x+15)
We get rid of parentheses
7x^2+5x+21x+15
We add all the numbers together, and all the variables
7x^2+26x+15
Back to the equation:
-(7x^2+26x+15)
We get rid of parentheses
-7x^2-26x-15+1=0
We add all the numbers together, and all the variables
-7x^2-26x-14=0
a = -7; b = -26; c = -14;
Δ = b2-4ac
Δ = -262-4·(-7)·(-14)
Δ = 284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{284}=\sqrt{4*71}=\sqrt{4}*\sqrt{71}=2\sqrt{71}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{71}}{2*-7}=\frac{26-2\sqrt{71}}{-14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{71}}{2*-7}=\frac{26+2\sqrt{71}}{-14} $

See similar equations:

| 2x+4=-8. | | 1/2(t+17)=48 | | x+40+x+24=180 | | 3/4h+33=21 | | 8y+24+17=180 | | 6x+10=5x+25 | | -x+5=-2. | | 2x+3x+100=600 | | (5w+3)(4+w)=0 | | 3s-6.64=7.46 | | 3f+5=13 | | x^2-15x+7.5=0 | | 0.2(x-200=44-x | | 3x+5+x=117 | | 5(4-2x)=014 | | 10=1+-3t | | 3(x-5)-16=2(x-8)+14 | | 2,025x-1675=25(81x-67 | | -x/4=-25 | | x+31+x-13=180 | | 6x-7+3x-29=90 | | x+67+x+79=180 | | x-10=20.76 | | y/3+3.1=4.1 | | 8y+24+17=90 | | 11x+22=55 | | x-12+x+44=180 | | 34(12x−9)+4=5−3(2−3x) | | 9u+3-2(-4u-2)=2(u-1) | | -10+5y=5 | | u/4=5.79=10.04 | | 40x+66=44x+12 |

Equations solver categories