If it's not what You are looking for type in the equation solver your own equation and let us solve it.
190.5=1.5b^2
We move all terms to the left:
190.5-(1.5b^2)=0
We get rid of parentheses
-1.5b^2+190.5=0
a = -1.5; b = 0; c = +190.5;
Δ = b2-4ac
Δ = 02-4·(-1.5)·190.5
Δ = 1143
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1143}=\sqrt{9*127}=\sqrt{9}*\sqrt{127}=3\sqrt{127}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-3\sqrt{127}}{2*-1.5}=\frac{0-3\sqrt{127}}{-3} =-\frac{3\sqrt{127}}{-3} =-\frac{\sqrt{127}}{-1} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+3\sqrt{127}}{2*-1.5}=\frac{0+3\sqrt{127}}{-3} =\frac{3\sqrt{127}}{-3} =\frac{\sqrt{127}}{-1} $
| 2d2=162 | | 8x-3=10x+10 | | 2236=26(p+35) | | 9(2x+-9.5)=-16.5+-8x | | 2236=26(p=35) | | 2/3x-13=21 | | 1/5x-13=2 | | 33x=8x | | 3/4m-16=32 | | 78+16m=382 | | 78+16m=392 | | 9+d/4=15 | | 76+16m=392 | | -4+w/2=6 | | 35n-169=286 | | 35n-165=286 | | 26n-130=208 | | a/10+4=5 | | 36q^2=6912 | | X+2=-24-x | | 23n-7=154 | | 14+6b+7+2b=1+56 | | 9/x+16=81 | | -14+6b+7+26=1+56 | | 1/3x-10=5 | | -8-59y=-8 | | 8(3x-7)=-6(x+7)=4 | | 3x+40=-14 | | 5x-2x=3x-4 | | X-5/2=x/2 | | 4+2x=4-2x | | 7x-3=6-(9-7x) |