If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19+1.50x=15+2/75x
We move all terms to the left:
19+1.50x-(15+2/75x)=0
Domain of the equation: 75x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
1.50x-(2/75x+15)+19=0
We get rid of parentheses
1.50x-2/75x-15+19=0
We multiply all the terms by the denominator
(1.50x)*75x-15*75x+19*75x-2=0
We add all the numbers together, and all the variables
(+1.50x)*75x-15*75x+19*75x-2=0
We multiply parentheses
75x^2-15*75x+19*75x-2=0
Wy multiply elements
75x^2-1125x+1425x-2=0
We add all the numbers together, and all the variables
75x^2+300x-2=0
a = 75; b = 300; c = -2;
Δ = b2-4ac
Δ = 3002-4·75·(-2)
Δ = 90600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{90600}=\sqrt{100*906}=\sqrt{100}*\sqrt{906}=10\sqrt{906}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(300)-10\sqrt{906}}{2*75}=\frac{-300-10\sqrt{906}}{150} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(300)+10\sqrt{906}}{2*75}=\frac{-300+10\sqrt{906}}{150} $
| 72-3x=6x | | 90+2x-10+x+25=180 | | 8y*5y=2,5 | | -7-(2-2x)=-84 | | 35+3x=45+2x= | | 7x-70=42 | | -7-2-2x)=-84 | | 29=3x-13 | | 5x=2(3x+2) | | 0.35+0.3x=0.45+0.2x | | 10+x=1.414x | | 6x+30=33 | | 2x+4=-21 | | 8x+2x-5=5(2x+4) | | 31/3y=0 | | 7^3x=5 | | 132=12m | | 6x=3+12x | | 9x-90=0 | | 5x+1-3x+8=20 | | -2+8x=2(2x+3) | | 3x-6+4=-20x=-1 | | 2a^2+9a-11=0 | | 20-x×(5x-4)=5×(x-x×x)-2 | | 2(x-4)=2(2x-12) | | 7y-21/3y=0 | | 52+24+x=180 | | v+1/9=40/9 | | 2x2-8x-10=0 | | 9(h+5)=8(h-5) | | 2x-8=4x+24 | | a=-1/6+13/6 |