If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 19(15x + 1) + -1(-2x + 10)(9x) = 5 Reorder the terms: 19(1 + 15x) + -1(-2x + 10)(9x) = 5 (1 * 19 + 15x * 19) + -1(-2x + 10)(9x) = 5 (19 + 285x) + -1(-2x + 10)(9x) = 5 Reorder the terms: 19 + 285x + -1(10 + -2x)(9x) = 5 Remove parenthesis around (9x) 19 + 285x + -1(10 + -2x) * 9x = 5 Reorder the terms for easier multiplication: 19 + 285x + -1 * 9x(10 + -2x) = 5 Multiply -1 * 9 19 + 285x + -9x(10 + -2x) = 5 19 + 285x + (10 * -9x + -2x * -9x) = 5 19 + 285x + (-90x + 18x2) = 5 Combine like terms: 285x + -90x = 195x 19 + 195x + 18x2 = 5 Solving 19 + 195x + 18x2 = 5 Solving for variable 'x'. Reorder the terms: 19 + -5 + 195x + 18x2 = 5 + -5 Combine like terms: 19 + -5 = 14 14 + 195x + 18x2 = 5 + -5 Combine like terms: 5 + -5 = 0 14 + 195x + 18x2 = 0 Begin completing the square. Divide all terms by 18 the coefficient of the squared term: Divide each side by '18'. 0.7777777778 + 10.83333333x + x2 = 0 Move the constant term to the right: Add '-0.7777777778' to each side of the equation. 0.7777777778 + 10.83333333x + -0.7777777778 + x2 = 0 + -0.7777777778 Reorder the terms: 0.7777777778 + -0.7777777778 + 10.83333333x + x2 = 0 + -0.7777777778 Combine like terms: 0.7777777778 + -0.7777777778 = 0.0000000000 0.0000000000 + 10.83333333x + x2 = 0 + -0.7777777778 10.83333333x + x2 = 0 + -0.7777777778 Combine like terms: 0 + -0.7777777778 = -0.7777777778 10.83333333x + x2 = -0.7777777778 The x term is 10.83333333x. Take half its coefficient (5.416666665). Square it (29.34027776) and add it to both sides. Add '29.34027776' to each side of the equation. 10.83333333x + 29.34027776 + x2 = -0.7777777778 + 29.34027776 Reorder the terms: 29.34027776 + 10.83333333x + x2 = -0.7777777778 + 29.34027776 Combine like terms: -0.7777777778 + 29.34027776 = 28.5624999822 29.34027776 + 10.83333333x + x2 = 28.5624999822 Factor a perfect square on the left side: (x + 5.416666665)(x + 5.416666665) = 28.5624999822 Calculate the square root of the right side: 5.34438958 Break this problem into two subproblems by setting (x + 5.416666665) equal to 5.34438958 and -5.34438958.Subproblem 1
x + 5.416666665 = 5.34438958 Simplifying x + 5.416666665 = 5.34438958 Reorder the terms: 5.416666665 + x = 5.34438958 Solving 5.416666665 + x = 5.34438958 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5.416666665' to each side of the equation. 5.416666665 + -5.416666665 + x = 5.34438958 + -5.416666665 Combine like terms: 5.416666665 + -5.416666665 = 0.000000000 0.000000000 + x = 5.34438958 + -5.416666665 x = 5.34438958 + -5.416666665 Combine like terms: 5.34438958 + -5.416666665 = -0.072277085 x = -0.072277085 Simplifying x = -0.072277085Subproblem 2
x + 5.416666665 = -5.34438958 Simplifying x + 5.416666665 = -5.34438958 Reorder the terms: 5.416666665 + x = -5.34438958 Solving 5.416666665 + x = -5.34438958 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5.416666665' to each side of the equation. 5.416666665 + -5.416666665 + x = -5.34438958 + -5.416666665 Combine like terms: 5.416666665 + -5.416666665 = 0.000000000 0.000000000 + x = -5.34438958 + -5.416666665 x = -5.34438958 + -5.416666665 Combine like terms: -5.34438958 + -5.416666665 = -10.761056245 x = -10.761056245 Simplifying x = -10.761056245Solution
The solution to the problem is based on the solutions from the subproblems. x = {-0.072277085, -10.761056245}
| |3x|=27 | | 6w-5=9w+7 | | 3.9x+10.81=32.4 | | 5(12+3p)=60 | | 2*x^7=48 | | 28=8+v | | X^7=24 | | 2(9s+8)-3s=3(5s+5)-20 | | 75+20m=35m | | -(7y+2)-(6y-5)=-5 | | 7x+3x=4 | | 3x^5+24x^2=0 | | 7+2p-2=8p+13-4p | | b=19.5t+580.72 | | 166-4x=23x+16 | | 5x+13x=48 | | 3x^5+24x=0 | | 9x+5.11=6x+10 | | b-15+5b=18(-19b+15)-15(b+19) | | -5x+x=48 | | x+45=4(5-x) | | 12m=o | | 9.57=10.5x+7.4(1-x) | | -x=0.56 | | 3x+7=4x-9 | | 126-5x=2x+21 | | -1.9(1-2.8x)=-2x-0.3(x-3.7) | | 2x+1=5+-4x | | 25-4V^2=0 | | 7y-42y+3y=6y-58y-172 | | -x-5x=2(5x+1)+2(-5x-4) | | 11-4x=3x-10 |